Preview

FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology

Advanced search

Disease-modifying osteoarthritis drugs (DMOADs): new trends in osteoarthritis therapy

https://doi.org/10.17749/2070-4909/farmakoekonomika.2023.207

Abstract

The review examines pharmacological agents that can have potential disease-modifying osteoarthritis drugs (DMOADs) status. DMOADs prevent the progression and further structural joint damage (structure-modifying effect), leading to a decrease in symptoms severity (symptom-modifying effect), such as pain, and improvement of joint function. Approaches to potential DMOADs selection are discussed: (1) the preferred target (bone, cartilage, synovia); (2) action drug mechanism/anti-cytokine therapy (matrix metalloproteinase inhibitors, inhibitors of pro-inflammatory interleukins, etc.). The main delivery systems of drugs claiming to be of DMOADs status and possible contribution of immunological mechanisms to osteoarthritis pathogenesis are considered. Methods evaluating the effectiveness of DMOADs therapy are of great interest (cytology, microscopy, radiological research methods, blood and synovia biochemical markers). Based on research results analysis, the following substances can be considered as potential DMOADs: chondroitin sulfate, glucosamine sulfate, undenatured type II collagen, vitamin D. Each of them has symptom-modifying and structural-modifying effects.

About the Authors

O. A. Shavlovskaya
International University of Restorative Medicine
Russian Federation

Dr. Med. Sc., Professor, Chair of Organization of Medical Rehabilitation and Sanatorium Treatment, International University of Restorative Medicine

8 bldg 2 Furmannyy Passage, Moscow 105062



О. А. Gromova
Federal Research Center “Computer Science and Control”, Russian Academy of Sciences
Russian Federation

Dr. Med. Sc., Professor, Leading Researcher, Federal Research Center “Computer Science and Control”, RAS

44 corp. 2 Vavilov Str., Moscow 211933



A. Yu. Kochish
Vreden Russian Scientific Research Institute of Traumatology and Orthopedics
Russian Federation

Dr. Med. Sc., Professor, Deputy Director, Vreden National Medical Research Center of Traumatology and Orthopedics

8 Academician Baykov Str., Saint Petersburg 195427



Yu. D. Yukhnovskaya
Sechenov University
Russian Federation

Clinical Resident, Chair of Clinical Immunology and Allergology, Sechenov University

18 bldg 2 Trubetskaya Str., Moscow 119991



I. D. Romanov
MD Clinic LLC
Russian Federation

Neurologist, Head of Scientific and Advisory Neurological Care, “MD Clinic” LLC

11 Dmitrievskiy Str., Moscow 111674



I. A. Bokova
Sechenov University
Russian Federation

MD, PhD, Associate Professor, Chair of Restorative Medicine, Rehabilitation and Balneology, Sechenov Univer

18 bldg 2 Trubetskaya Str., Moscow 119991



References

1. Oo W.M., Little C., Hunter D.J. The development of disease-modifying therapies for osteoarthritis (DMOADS): the evidence to date. Drug Des Devel Ther. 2021; 15: 2921–45. https://doi.org/10.2147/DDDT.S295224.

2. Oo W.M., Hunter D.J. Repurposed and investigational disease-modifying drugs in osteoarthritis (DMOADs). Ther Adv Musculoskel Dis. 2022; 14: 1759720X221090297. https://doi.org/10.1177/1759720X221090297.

3. Oo W.M., Hunter D.J. Disease modification in osteoarthritis: are we there yet? Clin Exp Rheumatol. 2019; 37 (Suppl. 120 (5)): 135–40.

4. Guermazi A., Roemer F.W., Crema M.D., et al. Strategic application of imaging in DMOAD clinical trials: focus on eligibility, drug delivery, and semiquantitative assessment of structural progression. Ther Adv Musculoskelet Dis. 2023; 15: 1759720X231165558. https://doi.org/10.1177/1759720X231165558.

5. Skiöldebrand E., Adepu S., Lützelschwab C., et al. A randomized, triple-blinded controlled clinical study with a novel disease-modifying drug combination in equine lameness-associated osteoarthritis. Osteoarthr Cartil Open. 2023; 5 (3): 100381. https://doi.org/10.1016/j.ocarto.2023.100381.

6. Fan Y., Li Z., He Y. Exosomes in the pathogenesis, progression, and treatment of osteoarthritis. Bioengineering. 2022; 9: 99. https://doi.org/10.3390/bioengineering9030099.

7. Makarczyk M.J., Gao Q., He Y., et al. Current models for development of disease-modifying osteoarthritis drugs. Tissue Eng Part C Methods. 2021; 27 (2): 124–38. https://doi.org/10.1089/ten.TEC.2020.0309.

8. Rodriguez-Merchan E.C. The current role of disease-modifying osteoarthritis drugs. Arch Bone Jt Surg. 2023; 11 (1): 11–22. https://doi.org/10.22038/ABJS.2021.56530.2807.

9. Brent J.M., Tian Z., Yao L., et al. Functional deficits in mice expressing human interleukin 8. Comp Med. 2020; 70 (3): 205–15. https://doi.org/10.30802/AALAS-CM-19-000049.

10. Zhang Y., Chee A., Shi P., et al. Allogeneic articular chondrocyte transplantation down regulates interleukin 8 gene expression in the degenerating rabbit intervertebral disk in vivo. Am J Phys Med Rehabil. 2015; 94: 530–8. https://doi.org/10.1097/PHM.0000000000000194.

11. Chen S., Chen W., Chen Y., et al. Chondroitin sulfate modified 3D porous electrospun nanofiber scaffolds promote cartilage regeneration. Mater Sci Eng C Mater Biol Appl. 2021; 118: 111312. https://doi.org/10.1016/j.msec.2020.111312.

12. Corradetti B., Taraballi F., Minardi S., et al. Chondroitin sulfate immobilized on a biomimetic scaffold modulates inflammation while driving chondrogenesis. Stem Cells Transl Med. 2016; 5: 670–82. https://doi.org/10.5966/sctm.2015-0233.

13. Huanga H., Loua Z., Zhenga S., et al. Intra-articular drug delivery systems for osteoarthritis therapy: shifting from sustained release to enhancing penetration into cartilage. Drug Delivery. 2022; 29 (1): 767–91. https://doi.org/10.1080/10717544.2022.2048130.

14. Wang J., Wang X., Cao Y., et al. Therapeutic potential of hyaluronic acid/chitosan nanoparticles for the delivery of curcuminoid in knee osteoarthritis and an in vitro evaluation in chondrocytes. Int J Mol Med. 2018; 42: 2604–14. https://doi.org/10.3892/ijmm.2018.3817.

15. Gencoglu H., Orhan C., Sahin E., Sahin K. Undenatured type II collagen (UC-II) in joint health and disease: a review on the current knowledge of companion animals. Animals (Basel). 2020; 10 (4): 697. https://doi.org/10.3390/ani10040697.

16. Makarczyk M.J., Hines S., Yagi H., et al. Using microphysiological system for the development of treatments for joint inflammation and associated cartilage loss – a pilot study. Biomolecules. 2023; 13: 384. https://doi.org/10.3390/biom13020384.

17. Fernandes T.L., Gomoll A.H., Lattermann C., et al. Macrophage: a potential target on cartilage regeneration. Front Immunol. 2020; 11: 111. https://doi.org/10.3389/fimmu.2020.00111.

18. Griffin T.M., Scanzello C.R. Innate inflammation and synovial macrophages in osteoarthritis pathophysiology. Clin Exp Rheumatol. 2019; 37 (Suppl. 120): 57–63.

19. Nedunchezhiyan U., Varughese I., Sun A.R., et al. Obesity, inflammation, and immune system in osteoarthritis. Front Immunol. 2022; 13: 907750. https://doi.org/10.3389/fimmu.2022.907750.

20. Wang W., Chu Y., Zhang P., et al. Targeting macrophage polarization as a promising therapeutic strategy for the treatment of osteoarthritis. Int Immunopharmacol. 2023; 116: 109790. https://doi.org/10.1016/j.intimp.2023.109790.

21. Mantovani A., Sica A., Sozzani S., et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004; 25 (12): 677–86. https://doi.org/10.1016/j.it.2004.09.015.

22. Martinez F.O., Sica A., Mantovani A., Locati M. Macrophage activation and polarization. Front Biosci. 2008; 1 (13): 453–61. https://doi.org/10.2741/2692.

23. Dai M., Sui B., Xue Y., et al. Cartilage repair in degenerative osteoarthritis mediated by squid type II collagen via immunomodulating activation of M2 macrophages, inhibiting apoptosis and hypertrophy of chondrocytes. Biomaterials. 2018; 180: 91–103. https://doi.org/10.1016/j.biomaterials.2018.07.011.

24. Lepage S.I.M., Robson N., Gilmore H., et al. Beyond cartilage repair: the role of the osteochondral unit in joint health and disease. Tissue Eng Part B Rev. 2019; 25: 114–25. https://doi.org/10.1089/ten.teb.2018.0122.

25. Torshin I.Yu., Gromova O.A., Lila A.M., et al. Toll-like receptors as a part of osteoarthritis pathophysiology: anti-inflammatory, analgesic and neuroprotective effects. Neurology, Neuropsychiatry, Psycho-somatics. 2021; 13 (4): 123–9 (in Russ.). https://doi.org/10.14412/2074-2711-2021-4-123-129.

26. Miller R.E., Scanzello C.R., Malfait A.M. An emerging role for Toll-like receptors at the neuroimmune interface in osteoarthritis. Semin Immunopathol. 2019; 41 (5): 583–94. https://doi.org/10.1007/s00281-019-00762-3.

27. Li Y.S., Luo W., Zhu S.A., Lei G.H. T-cells in osteoarthritis: alterations and beyond. Front Immunol. 2017; 8: 356. https://doi.org/10.3389/fimmu.2017.00356.

28. Gromova O.A., Torshin I.Yu., Lila A.M., Shavlovskaya O.A. On the prospects for the use of undenatured type II collagen in the treatment of osteoarthritis and other joint diseases. Modern Rheumatology Journal. 2022; 16 (4): 111–6 (in Russ.). https://doi.org/10.14412/1996-7012-2022-4-111-116.

29. Shavlovskaya O.A., Yukhnovskaya Yu.D., Romanov I.D., Bokova I.A. Pharmaconutraceutical Chondroguard® TRIO – chondroprotector with immunomodulatory activity. Neurology, Neuropsychiatry, Psychosomatics. 2023; 15 (4): 105–11 (in Russ.). https://doi.org/10.14412/2074-2711-2023-4-105-111.

30. Uebelhoer M., Lambert C., Grisart J., et al. Interleukins, growth factors, and transcription factors are key targets for gene therapy in osteoarthritis: a scoping review. Front Med. 2023; 10: 1148623. https://doi.org/10.3389/fmed.2023.1148623.

31. Roman-Blas J.A., Castañeda S., Sánchez-Pernaute O., et al. Chondroitin sulfate plus glucosamine sulfate shows no superiority over placebo in a randomized, double-blind, placebo-controlled clinical trial in patients with knee osteoarthritis. Arthritis Rheumatol. 2017; 69 (1): 77–85. https://doi.org/10.1002/art.39819.

32. Reginster J.V., Veronese N. Highly purified chondroitin sulfate: a literature review on clinical efficacy and pharmacoeconomic aspects in osteoarthritis treatment. Aging Clin Exp Res. 2021; 33 (1): 37–47. https://doi.org/10.1007/s40520-020-01643-8.

33. Ozeki N., Koga H., Nakagawa Y., et al. Association between knee cartilage thickness determined by magnetic resonance imaging three-dimensional analysis and the International Cartilage Repair Society (ICRS) arthroscopic grade. Knee. 2023; 42: 90–8. https://doi.org/10.1016/j.knee.2023.02.005.

34. Li X., Roemer F.W., Flavia Cicuttini F., et al. Early knee OA definition-what do we know at this stage? An imaging perspective. Ther Adv Musculoskelet Dis. 2023; 15: 1759720X231158204. https://doi.org/10.1177/1759720X231158204.

35. Roemer F.W., Collins J., Kwoh C.K., et al. MRI based screening for structural definition of eligibility in clinical DMOAD trials: Rapid Osteoarthritis MRI Eligibility Score (ROAMES). Osteoarthritis Cartilage. 2020; 28 (1): 71–81. https://doi.org/10.1016/j.joca.2019.08.005.

36. Brett A., Bowes M.A., Conaghan P.G. Comparison of 3D quantitative osteoarthritis imaging biomarkers from paired CT and MR images: data from the IMI-APPROACH study. BMC Musculoskelet Disord. 2023; 24 (1): 76. https://doi.org/10.1186/s12891-023-06187-2.

37. Kahan A., Uebelhart D., De Vathaire F., et al. Long-term effects of chondroitins 4 and 6 sulfate on knee osteoarthritis: the study on osteoarthritis progression prevention, a two-year, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2009; 60 (2): 524–33. https://doi.org/10.1002/art.24255.

38. Vreju F.A., Ciurea P.L., Rosu A., et al. The effect of glucosamine, chondroitin and harpagophytum procumbens on femoral hyaline cartilage thickness in patients with knee osteoarthritis – an MRI versus ultrasonography study. J Mind Med Sci. 2019; 6 (1): 162–8. https://doi.org/10.22543/7674.61.P162168.

39. van der Meijden O.A., Gaskill T.R., Millett P.J. Glenohumeral joint preservation: a review of management options for young, active patients with osteoarthritis. Adv Orthop. 2012; 2012: 160923. https://doi.org/10.1155/2012/160923.

40. Minasov T.B., Lila A.M., Nazarenko A.G., et al. Morphological reflection of highly purified chondroitin sulfate action in patients with decompensated form of knee osteoarthritis. Modern Rheumatology Journal. 2022; 16 (6): 55–63. (in Russ.). https://doi.org/10.14412/1996-7012-2022-6-55-63.

41. Torshin I.Yu., Lila A.M., Naumov A.V., et al. Meta-analysis of clinical trials of osteoarthritis treatment effectiveness with Chondroguard. FARMAKOEKONOMIKA. Sovremennaya farmakoekonomika i farmakoepidemiologiya / FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2020; 13 (4): 388–99 (in Russ.). https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.066.

42. Li S., Cao P., Chen T., Ding C. Latest insights in disease-modifying osteoarthritis drugs development. Ther Adv Musculoskelet Dis. 2023; 15: 1759720X231169839. https://doi.org/10.1177/1759720X231169839.

43. Gromova O.A., Torshin I.Yu., Lila A.M., Gromov A.N. Molecular mechanisms of action of glucosamine sulfate in the treatment of degenerative-dystrophic diseases of the joints and spine: results of proteomic analysis. Neurology, Neuropsychiatry, Psychosomatics. 2018; 10 (2): 38–44 (in Russ.). https://doi.org/10.14412/2074-2711-2018-2-38-44.

44. Kim H., Seo J., Lee Y., et al. The current state of the osteoarthritis drug development pipeline: a comprehensive narrative review of the present challenges and future opportunities. Ther Adv Musculo-skelet Dis. 2022; 14: 1759720X221085952. https://doi.org/10.1177/1759720X221085952.

45. Jomphe C., Gabriac M., Haleet T.M., et al. Chondroitin sulfate inhibits the nuclear translocation of nuclear factor-kappa B in interleukin-1 beta-stimulated chondrocytes. Basic Clin Pharmacol Toxicol. 2008; 102 (1): 59–65. https://doi.org/10.1111/j.1742-7843.2007.00158.x.

46. Shavlovskaya O.A., Gromova О.А., Torshin I.Yu. Points of undenatured type II collagen application in musculoskeletal pain syndromes treatment. S.S. Korsakov Journal of Neurology and Psychiatry. 2022; 122 (11): 40–5 (in Russ.). https://doi.org/10.17116/jnevro202212211140.

47. Verbruggen G., Goemaere S., Veys E.M. Chondroitin sulfate: S/DMOAD (structure/disease modifying anti-osteoarthritis drug) in the treatment of finger joint OA. Osteoarthritis Cartilage. 1998; Suppl. A: 37–8. https://doi.org/10.1016/s1063-4584(98)80010-1.

48. Yang W., Sun C., He S.Q., et al. The efficacy and safety of disease-modifying osteoarthritis drugs for knee and hip osteoarthritis – systematic review and network meta-analysis. J Gen Intern Med. 2021; 36 (7): 2085–93. https://doi.org/10.1007/s11606-021-06755-z.

49. Sarvilina I.V., Minasov T.B., Lila A.M., et al. On the efficacy of the parenteral form of highly purified chondroitin sulfate in the mode of perioperative preparation for total knee arthroplasty. Russian Medical Journal. 2022; 7: 7–16 (in Russ.).

50. Gwinnutt J.M., Wieczorek M., Rodriguez-Carrio J., et al. Effects of diet on the outcomes of rheumatic and musculoskeletal diseases (RMDs): systematic review and meta-analyses informing the 2021 EULAR recommendations for lifestyle improvements in people with RMDs. RMD Open. 2022; 8 (2): e002167. https://doi.org/10.1136/rmdopen-2021-002167.


Review

For citations:


Shavlovskaya O.A., Gromova О.А., Kochish A.Yu., Yukhnovskaya Yu.D., Romanov I.D., Bokova I.A. Disease-modifying osteoarthritis drugs (DMOADs): new trends in osteoarthritis therapy. FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2023;16(3):482-499. (In Russ.) https://doi.org/10.17749/2070-4909/farmakoekonomika.2023.207

Views: 2230


ISSN 2070-4909 (Print)
ISSN 2070-4933 (Online)