Therapeutic targets of disease-modifying therapy for secondary osteoarthritis (DMOADs): a systematic review
https://doi.org/10.17749/2070-4909/farmakoekonomika.2025.284
Abstract
Secondary osteoarthritis (OA) may develop in the setting of various diseases and injuries of the joints, including rheumatoid arthritis (RA), psoriasis (psoriatic arthritis, PsA), and ankylosing spondylitis (AS). This article presents a systematic review of highly purified standardized drugs of chondroitin sulfate (CS) and glucosamine sulfate (GS) used in the treatment of secondary OA in various models of RA, PsA, and AS. The molecular links of targeting the pathogenesis of secondary OA are considered in specific detail. CS and GS are shown to inhibit hyperinflammation through the CD44 and TLR2/4/8 receptors, as well as the NF-κB transcription factor, thus acting as a disease-modifying therapy for RA, PsA, and AS. Experimental and clinical studies of the effects of CS and GS in RA, PsA, and AS have confirmed the prospects of their standardized forms for use in the treatment and prevention of the diseases under consideration.
About the Authors
O. A. GromovaRussian Federation
Olga A. Gromova, Dr. Sci. Med., Prof.
WoS ResearcherID: J-4946-2017. Scopus Author ID: 7003589812
44 corp. 2 Vavilov Str., Moscow 119333
A. I. Zagrebneva
Russian Federation
Alena I. Zagrebneva, PhD
3 Pekhotnaya Str., Moscow 123182
1 Ostrovityanova Str., Moscow 117997
I. V. Sarvilina
Russian Federation
Irina V. Sarvilina, Dr. Sci. Med.
74 Sotsialisticheskaya, Rostov-on-Don 344002
O. A. Shavlovskaya
Russian Federation
Olga A. Shavlovskaya, Dr. Sci. Med., Prof.
WoS ResearcherID: V-4470-2018. Scopus Author ID: 15124744300
8 bldg 2 Furmannyy Passage, Moscow 105062
I. Yu. Torshin
Russian Federation
Ivan Yu. Torshin, PhD
WoS ResearcherID: C-7683-2018. Scopus Author ID: 7003300274
44 corp. 2 Vavilov Str., Moscow 119333
E. N. Simonova
Russian Federation
Elena N. Simonova
3 Pekhotnaya Str., Moscow 123182
References
1. Lila A.M., Alekseeva L.I., Taskina E.A., et al. Clinical guidelines (project) for the diagnostics and treatment of primary osteoarthritis for primary care specialists (general practitioners, therapists). Therapy. 2023; 9 (1): 7–22 (in Russ.). https://doi.org/10.18565/therapy.2023.1.7-22.
2. Torshin I.Y., Gromova O.A., Lila A.M., Limanova O.A. Systematic analysis of the molecular pathophysiology of tenosynovitis: promise for using chondroitin sulfate and glucosamine sulfate. Nevrologiya, neiropsikhiatriya, psikhosomatika / Neurology, Neuropsychiatry, Psychosomatics. 2020; 12 (2): 64–71 (in Russ.). https://doi.org/10.14412/2074-2711-2020-2-64-71.
3. Kaur S., White S., Bartold M. Periodontal disease as a risk factor for rheumatoid arthritis: a systematic review. JBI Libr Syst. Rev. 2012; 10 (42 Suppl.): 1–12. https://doi.org/10.11124/jbisrir-2012-288.
4. Zhou X., Weiser P., Pan J., et al. Chondroitin sulfate and abnormal contact system in rheumatoid arthritis. Prog Mol Biol Transl Sci. 2010; 93: 423–42. https://doi.org/10.1016/S1877-1173(10)93018-4.
5. Venetsanopoulou A., Alamanos Y., Voulgari P., Drosos A. Epidemiology of rheumatoid arthritis: genetic and environmental influences. Expert Rev Clin Immunol. 2022; 18 (9): 923–31. https://doi.org/10.1080/1744666X.2022.2106970.n.
6. Kim Y., Yang H., Kim K. Etiology and pathogenesis of rheumatoid arthritis-interstitial lung disease. Int J Mol Sci. 2023; 24 (19): 14509. https://doi.org/10.3390/ijms241914509.
7. Malik T., Aurelio D. Extraintestinal manifestations of inflammatory bowel disease. In: Treasure Island (FL): StatPearls Publishing; 2023 Mar 6. Available at: https://pubmed.ncbi.nlm.nih.gov/33760556/ (accessed 28.09.2024).
8. Balabanova R.M. Rheumatic diseases and viral infection: is there an association? Sovremennaya Revmatologiya / Modern Rheumatology Journal. 2020; 14 (4): 98–102 (in Russ.). https://doi.org/10.14412/1996-7012-2020-4-98-102.
9. Aureal M., Seauve M., Laplane S., et al. Incidence of infections in patients with psoriatic arthritis and axial spondyloarthritis treated with biological or targeted disease-modifying agents: a systematic review and meta-analysis of randomised controlled trials, open-label studies and observational studies. RMD Open. 2023; 9 (3): e003064. https://doi.org/1136/rmdopen-2023-003064.
10. Adhikari S., Meng S., Wu Y., et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infect Dis Poverty. 2020; 9 (1): 29. https://doi.org/10.1186/s40249-020-00646-x.
11. Kang J., Eun Y., Jang W., et al. Rheumatoid arthritis and risk of Parkinson disease in Korea. JAMA Neurol. 2023; 80 (6): 634–41. https://doi.org/10.1001/jamaneurol.2023.0932.
12. Shavlovskaya O.A. DMOADs and DMARDs in the treatment of patients with joint and spine diseases. FARMAKOEKONOMIKA. Sovremennaya farmakoekonomika i farmakoepidemiologiya / FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2023; 16 (4): 700–7 (in Russ.). https://doi.org/10.17749/2070-4909/farmakoekonomika.2023.226.
13. Di Matteo A., Bathon J., Emery P. Rheumatoid arthritis. Lancet. 2023; 402 (10416): 2019–33. https://doi.org/10.1016/S0140-6736(23)01525-8.
14. Ward M., Deodhar A., Gensler L., et al. 2019 Update of the American College of Rheumatology/Spondylitis Association of America/ Spondyloarthritis Research and Treatment Network Recommendations for the Treatment of Ankylosing Spondylitis and Nonradiographic Axial Spondyloarthritis. Arthritis Care Res. 2019; 71 (10): 1285–99. https://doi.org/10.1002/acr.24025.
15. Evbuomwan O., Van Rensburg B., Engelbrecht G., et al. The biodistribution and utility of (99m)Tc-Ethylenedicysteine-Deoxyglucose ((99m)Tc-Glucosamine) in the identification of active disease in patients with rheumatoid arthritis-a single center prospective study. Nucl Med Mol Imaging. 2024; 58 (2): 52–61. https://doi.org/10.1007/s13139-023-00823-4.
16. Chen G., Deng S., Liu S., et al. pH and ROS dual-sensitive nanocarriers for the targeted co-delivery and on-demand sequential release of tofacitinib and glucosamine for synergistic rheumatoid arthritis treatment. Small. 2024; 20 (24): e2308520. https://doi.org/10.1002/smll.202308520.
17. Siddiqui B., Ur Rehman A., Gul R., et al. Folate decorated chitosanchondroitin sulfate nanoparticles loaded hydrogel for targeting macrophages against rheumatoid arthritis. Carbohydr Polym. 2024; 327: 121683. https://doi.org/10.1016/j.carbpol.2023.121683.
18. Wang Z., Zhan C., Zeng F., Wu S. A biopolymer-based and inflammation-responsive nanodrug for rheumatoid arthritis treatment via inhibiting JAK-STAT and JNK signalling pathways. Nanoscale. 2020; 12 (45): 23013–27. https://doi.org/10.1039/d0nr05551d.
19. Andreas K., Lübke C., Häupl T., et al. Key regulatory molecules of cartilage destruction in rheumatoid arthritis: an in vitro study. Arthritis Res Ther. 2008; 10 (1): R9. https://doi.org/10.1186/ar2358.
20. Singh S., Vennila J., Snijesh V., et al. Implying analytic measures for unravelling rheumatoid arthritis significant proteins through drugtarget interaction. Interdiscip Sci. 2016; 8 (2): 122–31. https://doi.org/10.1007/s12539-015-0108-9.
21. Vallières M., du Souich P. Modulation of inflammation by chondroitin sulfate. Osteoarthritis Cartilage. 2010; 18 (Suppl. 1): S1–6. https://doi.org/10.1016/j.joca.2010.02.017.
22. Naor D., Sionov R., Ish-Shalom D. CD44: structure, function, and association with the malignant process. Adv Cancer Res. 1997; 71: 241–319. https://doi.org/10.1016/s0065-230x(08)60101-3.
23. Torshin I.Y., Gromova O.A., Lila A.M., et al. Toll-like receptors as a part of osteoarthritis pathophysiology: anti-inflammatory, analgesic and neuroprotective effects. Nevrologiya, neiropsikhiatriya, psikhosomatika / Neurology, Neuropsychiatry, Psychosomatics. 2021; 13 (4): 123–9 (in Russ.). https://doi.org/10.14412/2074-2711-2021-4-123-129.
24. Doody K., Stanford S., Sacchetti C., et al. Targeting phosphatasedependent proteoglycan switch for rheumatoid arthritis therapy. Sci Transl Med. 2015; 7 (288): 288ra76. https://doi.org/10.1126/scitranslmed.aaa4616.
25. Hua J., Sakamoto K., Kikukawa T., et al. Evaluation of the suppressive actions of glucosamine on the interleukin-1beta-mediated activation of synoviocytes. Inflamm Res. 2007; 56 (10): 432–8. https://doi.org/10.1007/s00011-007-7020-7.
26. Richter J., Capková K., Hříbalová V., et al. Collagen-induced arthritis: severity and immune response attenuation using multivalent N-acetyl glucosamine. Clin Exp Immunol. 2014; 177 (1): 121–33. https://doi.org/10.1111/cei.12313.
27. Kamel M., Hanafi M., Bassiouni M. Inhibition of elastase enzyme release from human polymorphonuclear leukocytes by N-acetylgalactosamine and N-acetyl-glucosamine. Clin Exp Rheumatol. 1991; 9 (1): 17–21.
28. Wang X., Liu D., Li D., et al. Combined treatment with glucosamine and chondroitin sulfate improves rheumatoid arthritis in rats by regulating the gut microbiota. Nutr Metab. 2023; 20 (1): 22. https://doi.org/10.1186/s12986-023-00735-2.
29. Bauerova K., Ponist S., Kuncirova V., et al. Chondroitin sulfate effect on induced arthritis in rats. Osteoarthritis Cartilage. 2011; 19 (11): 1373–9. https://doi.org/10.1016/j.joca.2011.08.006.
30. Matsumoto T., Inoue T., Takahashi A., et al. Anti-arthritic activity of synthesized chondroitin sulfate E hexasaccharide. Arzneimittelforschung. 2010; 60 (12): 754–9. https://doi.org/10.1055/s-0031-1296351.
31. So J., Song M., Kwon H., et al. Lactobacillus casei enhances type II collagen/glucosamine-mediated suppression of inflammatory responses in experimental osteoarthritis. Life Sci. 2011; 88 (7–8): 358–66. https://doi.org/10.1016/j.lfs.2010.12.013.
32. Hua J., Suguro S., Hirano S., et al. Preventive actions of a high dose of glucosamine on adjuvant arthritis in rats. Inflamm Res. 2005; 54 (3): 127–32. https://doi.org/10.1007/s00011-004-1333-6.
33. Dai W., Qi C., Wang S. Synergistic effect of glucosamine and vitamin E against experimental rheumatoid arthritis in neonatal rats. Biomed Pharmacother. 2018; 105: 835–40. https://doi.org/10.1016/j.biopha.2018.05.136.
34. Zhao J., Chen X., Cheng K., et al. Anserine and glucosamine supplementation attenuates the levels of inflammatory markers in rats with rheumatoid arthritis. AMB Express. 2020; 10 (1): 57. https://doi.org/10.1186/s13568-020-00987-8.
35. Issa A., Al Salamat H., Awad W., et al. The impact of pharmaceutical care on the efficacy and safety of transdermal glucosamine sulfate and capsaicin for joint pain. Int J Clin Pharm. 2021; 43 (1): 101–6. https://doi.org/10.1007/s11096-020-01113-1.
36. Arafa N., Hamuda H., Melek S., Darwish S. The effectiveness of Echinacea extract or composite glucosamine, chondroitin and methyl sulfonyl methane supplements on acute and chronic rheumatoid arthritis rat model. Toxicol Ind Health. 2013; 29 (2): 187–201. https://doi.org/10.1177/0748233711428643.
37. DeSalvo J., Skiba M., Howe C., et al. Natural product dietary supplement use by individuals with rheumatoid arthritis: a scoping review. Arthritis Care Res. 2019; 71 (6): 787–97. https://doi.org/10.1002/acr.23696.
38. Nakamura H., Masuko K., Yudoh K., et al. Effects of glucosamine administration on patients with rheumatoid arthritis. Rheumatol Int. 2007; 27 (3): 213–8. https://doi.org/10.1007/s00296-006-0197-1.
39. Scott I., Whittle R., Bailey J., et al. Rheumatoid arthritis, psoriatic arthritis, and axial spondyloarthritis epidemiology in England from 2004 to 2020: an observational study using primary care electronic health record data. Lancet Reg Health Eur. 2022; 23: 100519. https://doi.org/10.1016/j.lanepe.2022.100519.
40. Sukhinina A.V., Lila A.M., Smirnov A.V., Korotaeva T.V. Modern imaging techniques in the diagnosis of axial spondylitis: similarities and differences between axial psoriatic arthritis and ankylosing spondylitis. Sovremennaya Revmatologiya / Modern Rheumatology Journal. 2024; 18 (1): 7–14 (in Russ.). https://doi.org/10.14412/1996-7012-2024-1-7-14.
41. Adarichev V., Glant T. Experimental spondyloarthropathies: animal models of ankylosing spondylitis. Curr Rheumatol Rep. 2006; 8 (4): 267–74. https://doi.org/10.1007/s11926-006-0007-5.
42. Schumacher H. Jr. Management strategies for osteoarthritis, ankylosing spondylitis, and gouty arthritis. J Clin Rheumatol. 2004; 10 (3 Suppl.): S18–25. https://doi.org/10.1097/01.rhu.0000131745.37852.bb.
43. Manolios N., Ali M., Camden B., et al. Evaluating disease activity in patients with ankylosing spondylitis and rheumatoid arthritis using 99mtc-glucosamine. Eur J Rheumatol. 2016; 3 (2): 65–72. https://doi.org/10.5152/eurjrheum.2016.15074.
44. Hojgaard P., Ballegaard Ch., Cordtz R. Gender differences in biologic treatment outcomes – a study of 1750 patients with psoriatic arthritis using Danish Health Care Registers. Rheumatology. 2018; 57 (9): 1651– 60. https://doi.org/10.1093/rheumatology/key140.
45. Gubar E.E., Loginova E.Y., Korsakova Y.L., et al. Possibilities of screening for a high-risk axial skeletal lesion in psoriatic arthritis. Sovremennaya Revmatologiya / Modern Rheumatology Journal. 2020; 14 (3): 34–8 (in Russ.). https://doi.org/10.14412/1996-7012-2020-3-34-38.
46. Marguerie L., Flipo R., Grardel B., et al. Use of disease-modifying antirheumatic drugs in patients with psoriatic arthritis. Joint Bone Spine. 2002; 69 (3): 275–81. https://doi.org/10.1016/s1297-319x(02)00396-2.
47. Gwinnutt J., Wieczorek M., Rodríguez-Carrio J., et al. Effects of diet on the outcomes of rheumatic and musculoskeletal diseases (RMDs): systematic review and meta-analyses informing the 2021 EULAR recommendations for lifestyle improvements in people with RMDs. RMD Open. 2022; 8 (2): e002167. https://doi.org/10.1136/rmdopen-2021-002167.
48. Vergés J., Montell E., Herrero M., et al. Clinical and histopathological improvement of psoriasis in patients with osteoarthritis treated with chondroitin sulfate: report of 3 cases. Med Clin. 2004; 123 (19): 739–42 (in Spanish). https://doi.org/10.1016/s0025-7753(04)74654-0.
49. Gromova O.A., Torshin I.Yu., Lila A.M., et al. Systematic analysis of studies of antitumor effects of chondroprotectors glucosamine sulfate and chondroitin sulfate. Russian Medical Journal. 2019; 3 (4-1): 4–10 (in Russ.).
50. Gromova O.A., Torshin I.Yu., Zaychik B.Ts., et al. Differences in the standardization of medicinal products based on extracts of chondroitin sulfate. FARMAKOEKONOMIKA. Sovremennaya farmakoekonomika i farmakoepidemiologiya / FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2021; 14 (1): 50–62 (in Russ.). https://doi.org/10.17749/2070-4909/farmakoekonomika.2021.083.
51. Torshin I.Yu., Lila A.M., Naumov A.V., et al. Meta-analysis of clinical trials of osteoarthritis treatment effectiveness with Chondroguard. FARMAKOEKONOMIKA. Sovremennaya farmakoekonomika i farmakoepidemiologiya / FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2020; 13 (4): 388–99 (in Russ.). https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.066.
Review
For citations:
Gromova O.A., Zagrebneva A.I., Sarvilina I.V., Shavlovskaya O.A., Torshin I.Yu., Simonova E.N. Therapeutic targets of disease-modifying therapy for secondary osteoarthritis (DMOADs): a systematic review. FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2025;18(4):582-596. (In Russ.) https://doi.org/10.17749/2070-4909/farmakoekonomika.2025.284
JATS XML

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.































