Preview

FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology

Advanced search

Neutrophil extracellular trap biomarkers as indicators of vulvovaginal atrophy severity after cancer treatment

https://doi.org/10.17749/2070-4909/farmakoekonomika.2025.350

Abstract

Background. Vulvovaginal atrophy (VVA) following antitumor treatment is a common and clinically significant complication. At the same time, the immunoinflammatory mechanisms determining the severity and persistence of atrophic changes are yet to be sufficiently studied. The role of extracellular neutrophil traps (NETs) in the pathogenesis of genital tract mucosal damage remains virtually unexplored.

Objective: To evaluate blood levels of NET markers – citrullinated histone H3 (CitH3), myeloperoxidase (MPO), cathepsin G (CatG) – in various VVA phenotypes after antitumor therapy and to determine their significance as potential biomarkers of atrophy severity.

Material and methods. A cross-sectional comparative study enrolled 215 postmenopausal women divided into five groups as follows: VVA after surgical treatment (n=52), chemoradiotherapy (n=27), antiestrogenic therapy (n=48), VVA without a history of cancer (n=53), and control (n=35). Clinical symptoms, vaginal pH, vaginal health index (VHI), epithelial thickness, and plasma levels of CitH3, MPO, and CatG were evaluated. Statistical analysis was performed using the Mann–Whitney test with Bonferroni correction and calculation of the r effect size.

Results. The NETs profile varied depending on the nature of the treatment received. Maximum levels of CitH3 (0,65 [0,50–0,80] ng/ml), MPO (24 [18–30] ng/ml) и CatG (14 [12–16] ng/ml) were found in women after chemoradiotherapy. Antiestrogenic therapy was accompanied by pronounced immunoinflammatory activation of NETs, while surgical menopause and VVA without a history of gynecological cancer were associated with moderate and minimal levels, respectively. Intergroup differences between the oncological groups and the control group were statistically significant (p<0.005) with a large effect size according to the Mann–Whitney criterion (r≥0.50).

Conclusion. VVA after antitumor therapy is characterized by various immunoinflammatory phenotypes, which are reflected in specific NET profiles. CitH3, MPO, and CatG can be considered pathogenetically significant markers reflecting the degree of immunoinflammatory changes in VVA, thus representing candidates for further research aimed at patient stratification and the development of personalized therapy.

About the Authors

A. G. Solopova
Sechenov University
Russian Federation

Antonina G. Solopova, Dr. Sci. Med., Prof.

WoS ResearcherID: Q-1385-2015.

Scopus Author ID: 6505479504. 

8/2 Trubetskaya Str., Moscow 119048



J. Kh. Khizroeva
Sechenov University
Russian Federation

Jamilya Kh. Khizroeva, Dr. Sci. Med., Prof.

WoS ResearcherID: F-8384-2017.

Scopus Author ID: 57194547147. 

8/2 Trubetskaya Str., Moscow 119048



O. S. Gridasova
Sechenov University; Clinic “Real Trans Hair T”
Russian Federation

Olga S. Gridasova

8/2 Trubetskaya Str., Moscow 119048;

6 3rd Rozhinskaya Str., Moscow 115191



V. O. Bitsadze
Sechenov University
Russian Federation

Victoria O. Bitsadze, Dr. Sci. Med., Prof., Prof. of RAS

WoS ResearcherID: F-8409-2017.

Scopus Author ID: 6506003478. 

8/2 Trubetskaya Str., Moscow 119048



A. E. Ivanov
Yudin City Clinical Hospital
Russian Federation

Aleksandr E. Ivanov, PhD 

18A bldg 7, Zagorodnoe Shosse, Moscow 117152



V. N. Galkin
Yudin City Clinical Hospital
Russian Federation

18A bldg 7, Zagorodnoe Shosse, Moscow 117152



A. D. Makatsariya
Sechenov University
Russian Federation

Alexander D. Makatsariya, Dr. Sci. Med., Prof., Academician of RAS

WoS ResearcherID: M-5660-2016.

Scopus Author ID: 57222220144. 

8/2 Trubetskaya Str., Moscow 119048



References

1. Sarmento A.C.A., Costa A.P.F., Vieira-Baptista P., et al. Genitourinary syndrome of menopause: epidemiology, physiopathology, clinical manifestation and diagnostic. Front Reprod Health. 2021; 3: 779398. https://doi.org/10.3389/frph.2021.779398.

2. Wasnik V.B., Acharya N., Mohammad S. Genitourinary syndrome of menopause: a narrative review focusing on its effects on the sexual health and quality of life of women. Cureus. 2023; 15 (11): e48143. https://doi.org/10.7759/cureus.48143.

3. Gridasova O.S. Role of personal hygiene in managing patients with vulvovaginal atrophy. Reabilitologia / Journal of Medical Rehabilitation. 2025; 3 (1): 22–8 (in Russ.). https://doi.org/10.17749/2949-5873/rehabil.2025.29.

4. Cox P., Panay N. Vulvovaginal atrophy in women after cancer. Climacteric. 2019; 22 (6): 565–71. https://doi.org/10.1080/13697137.2019.1643180.

5. Shifren J.L., Gass M.L.S. The North American Menopause Society recommendations for clinical care of midlife women. Menopause. 2014; 21 (10): 1038–62. https://doi.org/10.1097/GME.0000000000000319.

6. Ampilogova D.М., Solopova А.G., Blinov D.V., et al. The effectiveness of rehabilitation in vulvovaginal atrophy. FARMAKOEKONOMIKA. Sovremennaya farmakoekonomika i farmakoepidemiologiya / FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2024; 17 (2): 200–11 (in Russ.). https://doi.org/10.17749/2070-4909/farmakoekonomika.2024.258.

7. Vorobev A.V., Hajiyeva A.B., Son E.A. Effect of a rehabilitation program on magnesium levels in women with vulvovaginal atrophy in surgical menopause. Reabilitologia / Journal of Medical Rehabilitation. 2024; 2 (4): 336–43 (in Russ.). https://doi.org/10.17749/2949-5873/rehabil.2024.25.

8. Gridasova O.S., Solopova A.G., Rumyantseva E.I., et al. Current approaches to the treatment of vulvovaginal atrophy in women with gynecological and breast cancer. ФАРМАКОЭКОНОМИКА. FARMAKOEKONOMIKA. Sovremennaya farmakoekonomika i farmakoepidemiologiya / FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2025; 18 (2): 284–93 (in Russ.). https://doi.org/10.17749/2070-4909/farmakoekonomika.2025.314.

9. The NAMS 2020 GSM Position Statement Editorial Panel. The 2020 genitourinary syndrome of menopause position statement of The North American Menopause Society. Menopause. 2020; 27 (9): 976–92. https://doi.org/10.1097/GME.0000000000001609.

10. Portman D.J., Gass M.L. Genitourinary syndrome of menopause: new terminology for vulvovaginal atrophy from the International Society for the Study of Women's Sexual Health and the North American Menopause Society. Maturitas. 2014; 79 (3): 349–54. https://doi.org/10.1016/j.maturitas.2014.07.013.

11. Narutytė R., Žukienė G., Bartkevičienė D. Vulvovaginal atrophy following treatment for oncogynecologic pathologies: etiology, epidemiology, diagnosis, and treatment options. Medicina. 2024; 60 (10): 1584. https://doi.org/10.3390/medicina60101584.

12. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018; 18 (2): 134–47. https://doi.org/10.1038/nri.2017.105.

13. Wang H., Kim S.J., Lei Y., et al. Neutrophil extracellular traps in homeostasis and disease. Sig Transduct Target Ther. 2024; 9 (1): 235. https://doi.org/10.1038/s41392-024-01933-x.

14. Barr F.D., Ochsenbauer C., Wira C.R., et al. Neutrophil extracellular traps prevent HIV infection in the female genital tract. Mucosal Immunol. 2018; 11 (5): 1420–8. https://doi.org/10.1038/s41385-018-0045-0.

15. Moreno de Lara L., Werner A., Borchers A., et al. Aging dysregulates neutrophil extracellular trap formation in response to HIV in blood and genital tissues. Front Immunol. 2023; 14: 1256182. https://doi.org/10.3389/fimmu.2023.1256182.

16. Zambrano F., Melo A., Rivera-Concha R., et al. High presence of NETotic cells and neutrophil extracellular traps in vaginal discharges of women with vaginitis: an exploratory study. Cells. 2022; 11 (20): 3185. https://doi.org/10.3390/cells11203185.

17. Gridasova O.S., Khizroeva J.Kh., Solopova A.G., et al. Assessing blood vascular endothelial growth factor level in patients with vulvovaginal atrophy. Obstetrics, Gynecology and Reproduction. 2025; 19 (5): 727–36 (in Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.684.

18. Brinkmann V., Reichard U., Goosmann C., et al. Neutrophil extracellular traps kill bacteria. Science. 2004; 303 (5663): 1532–5. https://doi.org/10.1126/science.1092385.

19. Hidalgo A., Libby P., Soehnlein O., et al. Neutrophil extracellular traps: from physiology to pathology. Cardiovasc Res. 2022; 18 (13): 2737–53. https://doi.org/10.1093/cvr/cvab329.

20. Yu S., Liu J., Yan N. Endothelial dysfunction induced by extracellular neutrophil traps plays important role in the occurrence and treatment of extracellular neutrophil traps-related disease. Int J Mol Sci. 2022; 23 (10): 5626. https://doi.org/10.3390/ijms23105626.

21. Amirlatifi S., Forouzin S., Sadati E., et al. Ovarian cancer, neutrophil hitchhiking, and NETs: unraveling their role in pathogenesis and management. Med Oncol. 2025; 42 (8): 302. https://doi.org/10.1007/s12032-025-02860-9.

22. Obeagu E.I., Obeagu G.U. Exploring neutrophil functionality in breast cancer progression: a review. Medicine. 2024; 103 (13): e37654. https://doi.org/10.1097/MD.0000000000037654.

23. Yano J., Fidel P.L. Impaired neutrophil extracellular trap-forming capacity contributes to susceptibility to chronic vaginitis in a mouse model of vulvovaginal candidiasis. Infect Immun. 2024; 92 (3): e0035023. https://doi.org/10.1128/iai.00350-23.

24. Lubián López D.M. Management of genitourinary syndrome of menopause in breast cancer survivors: an update. World J Clin Oncol. 2022; 13 (2): 71–100. https://doi.org/10.5306/wjco.v13.i2.71.

25. Faubion S.S., Larkin L.C., Stuenkel C.A., et al. Management of genitourinary syndrome of menopause in women with or at high risk for breast cancer: consensus recommendations from The North American Menopause Society and The International Society for the Study of Women's Sexual Health. Menopause. 2018; 25 (6): 596–608. https://doi.org/10.1097/GME.0000000000001121.

26. Aslanova Z.D., Khizroeva J.Kh., Solopova A.G., et al. Clinical significance of determining neutrophil extracellular traps in women with oncogynecological neoplasms. Obstetrics, Gynecology and Reproduction. 2023; 17 (6): 751–68 (in Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.447.

27. Makatsariya A.D., Slukhanchuk E.V., Bitsadze V.O., et al. The concept of thromboinflammation underlying thrombotic complications, tumor progression and metastasis in gynecological cancer patients. Obstetrics, Gynecology and Reproduction. 2024; 18 (4): 450–63 (in Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.542.

28. Khizroeva J.Kh., Aslanova Z.D., Solopova A.G., et al. The role of neutrophil extracellular traps in cancer progression and thrombosis development. Obstetrics, Gynecology and Reproduction. 2024; 18 (1): 55–67 (in Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.475.

29. Bitsadze V.О., Slukhanchuk Е.V., Solopova А.G., et al. The role of the microenvironment in tumor growth and spreading. Obstetrics, Gynecology and Reproduction. 2024; 18 (1): 96–111 (in Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.489.

30. Mowery Y.M., Luke J.J. NETosis impact on tumor biology, radiation, and systemic therapy resistance. Clin Cancer Res. 2024; 30 (18): 3965–67. https://doi.org/10.1158/1078-0432.CCR-24-1363.

31. Teijeira A., Garasa S., Ochoa M.C., et al. Low-dose ionizing γ-radiation elicits the extrusion of neutrophil extracellular traps. Clin Cancer Res. 2024; 30 (18): 4131–42. https://doi.org/10.1158/1078-0432.CCR-23-3860.

32. Patel D., Dodd W.S., Lucke-Wold B., et al. Neutrophils: novel contributors to estrogen-dependent intracranial aneurysm rupture via neutrophil extracellular traps. J Am Heart Assoc. 2023; 12 (21): e029917. https://doi.org/10.1161/JAHA.123.029917.

33. Shu Q., Zhang N., Liu Y., et al. IL-8 triggers neutrophil extracellular trap formation through an nicotinamide adenine dinucleotide phosphate oxidase- and mitogen-activated protein kinase pathway-dependent mechanism in uveitis. Invest Ophthalmol Vis Sci. 2023; 64 (13): 19. https://doi.org/10.1167/iovs.64.13.19.

34. de Mattos T.R.F., Formiga M.A. Jr., Saraiva E.M. Resveratrol prevents the release of neutrophil extracellular traps (NETs) by controlling hydrogen peroxide levels and nuclear elastase migration. Sci Rep. 2024; 14 (1): 9107. https://doi.org/10.1038/s41598-024-59854-2.

35. Nijat D., Zhao Q., Abdurixit G., et al. An up-to-date review of traditional chinese medicine in the treatment of atherosclerosis: components, mechanisms, and therapeutic potentials. Phytother Res. 2025; 39 (8): 3709–35. https://doi.org/10.1002/ptr.70037.

36. Huang J., Hong W., Wan M., Zheng L. Molecular mechanisms and therapeutic target of NETosis in diseases. MedComm (2020). 2022; 3 (3): e162. https://doi.org/10.1002/mco2.162.

37. Yadav R., Momin A., Godugu C. DNase based therapeutic approaches for the treatment of NETosis related inflammatory diseases. Int Immunopharmacol. 2023; 124 (Pt A): 110846. https://doi.org/10.1016/j.intimp.2023.110846.

38. Yao W., Chen J., Wu S., et al. ONO-5046 suppresses reactive oxidative species-associated formation of neutrophil extracellular traps. Life Sci. 2018; 210: 243–50. https://doi.org/10.1016/j.lfs.2018.09.008.

39. Franceschin L., Guidotti A., Mazzetto R., et al. Repurposing historic drugs for neutrophil-mediated inflammation in skin disorders. Biomolecules. 2024; 14 (12): 1515. https://doi.org/10.3390/biom14121515.

40. Zhukov A.S., Khairutdinov V.R., Samtsov A.V., et al. Preclinical efficacy investigation of human neutrophil elastase inhibitor sivelestat in animal model of psoriasis. Skin Health Dis. 2021; 2 (2): e90. https://doi.org/10.1002/ski2.90.

41. Mutua V., Gershwin L.J. A review of neutrophil extracellular traps (NETs) in disease: potential anti-NETs therapeutics. Clin Rev Allergy Immunol. 2021; 61 (2): 194–211. https://doi.org/10.1007/s12016-020-08804-7.

42. Pérez-López F.R., Phillips N., Vieira-Baptista P., et al. Management of postmenopausal vulvovaginal atrophy: recommendations of the International Society for the Study of Vulvovaginal Disease. Gynecol Endocrinol. 2021; 37 (8): 746–52. https://doi.org/10.1080/09513590.2021.1943346.

43. Cucinella L., Tiranini L., Cassani C., et al. Genitourinary syndrome of menopause in breast cancer survivors: current perspectives on the role of laser therapy. Int J Womens Health. 2023; 15: 1261–82. https://doi.org/10.2147/IJWH.S414509.

44. Labrie F., Archer D.F., Koltun W., et al. Efficacy of intravaginal dehydroepiandrosterone (DHEA) on moderate to severe dyspareunia and vaginal dryness, symptoms of vulvovaginal atrophy, and of the genitourinary syndrome of menopause. Menopause. 2016; 23 (3): 243–56. https://doi.org/10.1097/GME.0000000000000571.

45. Lilue M., Palacios S., Del Carmen Pingarrón Santofimia M. Experience with ospemifene in patients with vulvar and vaginal atrophy and a history of breast cancer: case studies. Drugs Context. 2020; 9: 2020-3-4. https://doi.org/10.7573/dic.2020-3-4.

46. Villa P., Cassani C., Nappi R.E., et al. Quality of life and satisfaction with ospemifene for treating vulvovaginal atrophy in breast cancer survivors: six-month results from the PatiEnt SatisfactiON StudY (PEONY). Clin Breast Cancer. 2025; 25 (8): 782–91.e2. https://doi.org/10.1016/j.clbc.2025.08.001.

47. Arroyo C. Fractional CO2 laser treatment for vulvovaginal atrophy symptoms and vaginal rejuvenation in perimenopausal women. Int J Womens Health. 2017; 9: 591–5. https://doi.org/10.2147/IJWH.S136857.


Review

For citations:


Solopova A.G., Khizroeva J.Kh., Gridasova O.S., Bitsadze V.O., Ivanov A.E., Galkin V.N., Makatsariya A.D. Neutrophil extracellular trap biomarkers as indicators of vulvovaginal atrophy severity after cancer treatment. FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. (In Russ.) https://doi.org/10.17749/2070-4909/farmakoekonomika.2025.350

Views: 35


ISSN 2070-4909 (Print)
ISSN 2070-4933 (Online)