Primary prevention of venous thromboembolism with low molecular weight heparins in surgical patients – 2024: Council of Experts resolution
https://doi.org/10.17749/2070-4909/farmakoekonomika.2024.250
Abstract
On March 15, 2024, in Moscow, the Russian Phlebological Association and the National Association of Specialists in Thrombosis, Clinical Hemostasiology and Hemorheology organized a meeting of the Council of Experts during the Russian Forum on Thrombosis and Hemostasis on the acute issues of venous thromboembolism (VTE) primary prevention using low molecular weight heparins (LMWH) in surgical patients with different body weight. The participants reviewed the relevance and prevalence of this problem in surgical practice, discussed risk factors and the frequency of VTE development, including bleeding in the postoperative period, and the Caprini risk score for complications. The discussion also focused on standard and personalized LMWH doses for primary prophylaxis of VTE in the perioperative period in surgical patients, depending on body weight, and the role of laboratory tests, including assessment of LMWH anti-Xa activity for monitoring the efficacy and safety of VTE primary prevention in clinical practice.
Keywords
About the Authors
А. S. PetrikovRussian Federation
Aleksey S. Petrikov – Dr. Med. Sc., Associate Professor, Cardiovascular Surgeon; Member of Executive Board
WоS ResearcherID: JXY-0009-2024;
Scopus Author ID: 56771302600
123 Malakhov Str., Barnaul 656006
37 corp. 17 Bolshaya Yakimanka Str., Moscow 117049
Т. V. Vavilova
Russian Federation
Tatiana V. Vavilova – Dr. Med. Sc., Professor, Chief of Chair of Laboratory Medicine with the Clinic of the Institute of Medical Education
Scopus Author ID: 7004477312
2 Akkuratov Str., Saint Petersburg 197341
А. V. Vardanyan
Russian Federation
Arshak V. Vardanyan – Dr. Med. Sc., Professor, Chair of Surgery
Scopus Author ID: 57215436271
2/1 bldg 1 Barrikadnaya Str., Moscow 125993
М. N. Zamyatin
Russian Federation
Mikhail N. Zamyatin – Dr. Med. Sc., Professor, Anesthesiologist-Resuscitator (Chief Expert), Chief of Chair of Medical Care Organization in Emergency Situations, Director of Federal Center for Disaster Medicine
WoS ResearcherID: V-2554-2017
Scopus Author ID: 57193140373
70 Nizhnyaya Pervomayskaya Str., Moscow 105203
I. А. Zolotukhin
Russian Federation
Igor A. Zolotukhin – Dr. Med. Sc., Professor of RAS, Executive Secretary; Professor, Chair of Faculty Surgery No. 1; Head of Department of Basic and Applied Research in Surgery, Research Institute of Clinical Surgery
WoS ResearcherID: P-5001-2016
Scopus Author ID: 8312153900
37 corp. 17 Bolshaya Yakimanka Str., Moscow 117049
8 Leninsky Ave., Moscow 119049
1 bldg 6 Ostrovityanov Str., Moscow 117513
К. V. Lobastov
Russian Federation
Kirill V. Lobastov – Dr. Med. Sc., Associate Professor, Chair of General Surgery, Faculty of Medicine
WoS ResearcherID: Q-4095-2017
Scopus Author ID: 55863188800
1 bldg 6 Ostrovityanov Str., Moscow 117513
Е. V. Roitman
Russian Federation
Eugene V. Roitman – Dr. Biol. Sc., Professor, Chair of Oncology, Hematology and Radiotherapy, Faculty of Pediatrics; Leading Researcher; President
WoS ResearcherID: M-6541-2017
Scopus Author ID: 7004167632
1 bldg 6 Ostrovityanov Str., Moscow 117513
80 Volokolamskoe Shosse, Moscow 125367
25/9 Tverskaya Str., Moscow 125375
Е. I. Seliverstov
Russian Federation
Evgeny I. Seliverstov – Dr. Med. Sc., Associate Professor, Chair of Faculty Surgery No. 1; Chief Researcher, Department of Basic and Applied Research in Cardiovascular Surgery, Research Institute of Clinical Surgery
Scopus Author ID: 24332884500
8 Leninsky Ave., Moscow 119049
1 bldg 6 Ostrovityanov Str., Moscow 117513
Yu. М. Stoyko
Russian Federation
Yuriy M. Stoyko – Dr. Med. Sc., Professor, Honorary President of Russian Phlebological Association; Chief Surgeon
37 corp. 17 Bolshaya Yakimanka Str., Moscow 117049
70 Nizhnyaya Pervomayskaya Str., Moscow 105203
I. А. Suchkov
Russian Federation
Igor A. Suchkov – Dr. Med. Sc., Professor, President of Russian Phlebological Association; Professor, Chair of Cardiovascular, Endovascular Surgery and Radiation Diagnostics, Vice-Rector for Research and Innovative Development
WoS ResearcherID: M-1180-2016
Scopus Author ID: 56001271800
37 corp. 17 Bolshaya Yakimanka Str., Moscow 117049
9 Vysokovoltnaya Str., Ryazan 390026
References
1. Bockeria L.A., Zatevakhin I.I., Kiriyenko A.I., et al. Russian clinical guidelines for the diagnosis, treatment and prevention of venous thromboembolic complications (VTCs). Flebologiya / Journal of Venous Disorders. 2015; 9 (4-2): 1–52 (in Russ.).
2. Seliverstov E.I., Lobastov K.V., Ilyukhin E.A., et al. Prevention, diagnostics and treatment of deep vein thrombosis. Russian experts consensus. Flebologiya / Journal of Venous Disorders. 2023; 17 (3): 152–296 (in Russ.). https://doi.org/10.17116/flebo202317031152.
3. Cardiovascular Disease Educational and Research Trust; European Venous Forum; North American Thrombosis Forum; International Union of Angiology; Union Internationale du Phlebologie. Prevention and treatment of venous thromboembolism: international consensus statement (guidelines according to scientific evidence). Clin Appl Thromb Hemost. 2013; 19 (2): 116–8. https://doi.org/10.1177/1076029612474840.
4. Darzi A.J., Karam S.G., Charide R., et al. Prognostic factors for VTE and bleeding in hospitalized medical patients: a systematic review and meta-analysis. Blood. 2020; 135 (20): 1788–810. https://doi.org/10.1182/blood.2019003603.
5. Anderson D.R., Morgano G.P., Bennett C., et al. American Society of Hematology 2019 guidelines for management of venous thromboembolism: prevention of venous thromboembolism in surgical hospitalized patients. Blood Adv. 2019; 3 (23): 3898–944. https://doi.org/10.1182/bloodadvances.2019000975.
6. Schünemann H.J., Cushman M., Burnett A.E., et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: prophylaxis for hospitalized and nonhospitalized medical patients. Blood Adv. 2018; 2 (22): 3198–225. https://doi.org/10.1182/bloodadvances.2018022954.
7. Nicolaides A.N., Fareed J., Spyropoulos A.C., et al. Prevention and management of venous thromboembolism. International Consensus Statement. Guidelines according to scientific evidence. Int Angiol. 2024; 43 (1): 1–222. https://doi.org/10.23736/S0392-9590.23.05177-5.
8. Duranteau J., Taccone F.S., Verhamme P., Ageno W. European guidelines on perioperative venous thromboembolism prophylaxis: intensive care. Eur J Anaesthesiol. 2018; 35 (2): 142–6. https://doi.org/10.1097/EJA.0000000000000707.
9. Gee E. The National VTE Exemplar Centres Network response to implementation of updated NICE guidance: venous thromboembolism in over 16s: reducing the risk of hospital-acquired deep vein thrombosis or pulmonary embolism (NG89). Br J Haematol. 2019; 186 (5): 792–3. https://doi.org/10.1111/bjh.16010.
10. Encke A., Haas S., Kopp I. Clinical practice guideline: the prophylaxis of venous thromboembolism. Dtsch Arztebl Int. 2016; 113 (31–32): 532–8. https://doi.org/10.3238/arztebl.2016.0532.
11. Khan F., Rahman A., Carrier M., et al. Long term risk of symptomatic recurrent venous thromboembolism after discontinuation of anticoagulant treatment for first unprovoked venous thromboembolism event: systematic review and meta-analysis. BMJ. 2019; 366: l4363. https://doi.org/10.1136/bmj.l4363.
12. Heit J.A., Ashrani A., Crusan D.J., et al. Reasons for the persistent incidence of venous thromboembolism. Thromb Haemost. 2017; 117 (2): 390–400. https://doi.org/10.1160/TH16-07-0509.
13. Lebedev N.N., Babitsky A.A., Shikhmetov A.N., et al. Modern approaches and unresolved issues of prevention of venous thromboembolic complications during surgical interventions. Bulletin of Pirogov National Medical & Surgical Center. 2023; 18 (1): 126–33 (in Russ.). https://doi.org/10.25881/20728255_2023_18_1_126.
14. Andriyashkin A.V., Kuliev S.A., Nikishkov A.S., et al. The prevention of venous thromboembolism in the patients with incisional hernias: the results of an observational cross-sectional study. Flebologiya / Journal of Venous Disorders. 2017; 11 (1): 17–20 (in Russ.). https://doi.org/10.17116/flebo201711117-20.
15. Yan S. The incidence of venous thrombosis in the European population: the role of surgical interventions. Meditsina neotlozhnyh sostoyaniy / Emergency Medicine. 2017; 4: 24–9 (in Russ.).
16. Kostyuchenko M.V. Modern methods for the prevention of thromboembolic complications in the postoperative period. Consilium Medicum. 2019; 21 (8): 102–7 (in Russ.).
17. Arshad N., Isaksen T., Hansen J.B., Brækkan S.K. Time trends in incidence rates of venous thromboembolism in a large cohort recruited from the general population. Eur J Epidemiol. 2017; 32 (4): 299–305. https://doi.org/10.1007/s10654-017-0238-y.
18. Heit J.A., O'Fallon W.M., Petterson T.M., et al. Relative impact of risk factors for deep vein thrombosis and pulmonary embolism: a population-based study. Arch Intern Med. 2002; 162 (11): 1245–8. https://doi.org/10.1001/archinte.162.11.1245.
19. Gangireddy C., Rectenwald J.R., Upchurch G.R., et al. Risk factors and clinical impact of postoperative symptomatic venous thromboembolism. J Vasc Surg. 2007; 45 (2): 335–41. https://doi.org/10.1016/j.jvs.2006.10.034.
20. Wilson S., Chen X., Cronin M., et al. Thrombosis prophylaxis in surgical patients using the Caprini Risk Score. Curr Probl Surg. 2022; 59 (11): 101221. https://doi.org/10.1016/j.cpsurg.2022.101221.
21. Meknas D., Brækkan S.K., Hansen J.B., Morelli V.M. Surgery as a trigger for incident venous thromboembolism: results from a population-based case-crossover study. TH Open. 2023; 7 (3): e244–50. https://doi.org/10.1055/a-2159-9957.
22. Petrikov A.S. Parnaparin sodium – modern therapy options and prevention of venous thromboembolic complications. Pirogov Russian Journal of Surgery. 2020; 11: 115–26 (in Russ.). https://doi.org/10.17116/hirurgia2020111115.
23. Kuznetsova M.R., Marchenko I.P., Fedorov E.E. Prevention of venous thromboembolic complications in surgery. Ambulatornaya khirurgiya / Ambulatory Surgery (Russia). 2018; 1–2: 20–5 (in Russ.). https://doi.org/10.21518/1995-14772018-1-2-20-25.
24. Grimnes G., Isaksen T., Tichelaar Y.I.G.V., et al. Acute infection as a trigger for incident venous thromboembolism: results from a population-based case-crossover study. Res Pract Thromb Haemost. 2017; 2 (1): 85–92. https://doi.org/10.1002/rth2.12065.
25. Bjøri E., Johnsen H.S., Hansen J.B., Brækkan S.K. Hospitalization as a trigger for venous thromboembolism – results from a population-based case-crossover study. Thromb Res. 2019; 176: 115–9. https://doi.org/10.1016/j.thromres.2019.02.024.
26. Heit J.A., Silverstein M.D., Mohr D.N., et al. Risk factors for deep vein thrombosis and pulmonary embolism: a population-based case-control study. Arch Intern Med. 2000; 160 (6): 809–15. https://doi.org/10.1001/archinte.160.6.809.
27. Salzman E.W., Hirsh J. Prevention of venous thromboembolism. In: Colman R.W., Hirsh J., Marder V.J. (Eds.) Hemostasis and thrombosis, basic principles and clinical practice. New York, NY: Lippincott; 1982: 986 pp.
28. Rogers S.O. Jr., Kilaru R.K., Hosokawa P., et al. Multivariable predictors of postoperative venous thromboembolic events after general and vascular surgery: results from the patient safety in surgery study. J Am Coll Surg. 2007; 204 (6): 1211–21. https://doi.org/10.1016/j.jamcollsurg.2007.02.072.
29. Lobastov K., Urbanek T., Stepanov E., et al. The thresholds of Caprini score associated with increased risk of venous thromboembolism across different specialties: a systematic review. Ann Surg. 2023; 277 (6): 929–37. https://doi.org/10.1097/SLA.0000000000005843.
30. Hanh B.M., Cuong L.Q., Son N.T., et al. Determination of risk factors for venous thromboembolism by an adapted Caprini scoring system in surgical patients. J Pers Med. 2019; 9 (3): 36. https://doi.org/10.3390/jpm9030036.
31. Albayati M.A., Grover S.P., Saha P., et al. Postsurgical inflammation as a causative mechanism of venous thromboembolism. Semin Thromb Hemost. 2015; 41 (6): 615–20. https://doi.org/10.1055/s-0035-1556726.
32. Cofrancesco E., Cortellaro M., Leonardi P., et al. Markers of hemostatic system activation during thromboprophylaxis with recombinant hirudin in total hip replacement. Thromb Haemost. 1996; 75 (3): 407–11.
33. Arnesen H., Dahl O.E., Aspelin T., et al. Sustained prothrombotic profile after hip replacement surgery: the influence of prolonged prophylaxis with dalteparin. J Thromb Haemost. 2003; 1 (5): 971–5. https://doi.org/10.1046/j.1538-7836.2003.00111.x.
34. Samama C.M., Thiry D., Elalamy I., et al. Perioperative activation of hemostasis in vascular surgery patients. Anesthesiology. 2001; 94 (1): 74–8. https://doi.org/10.1097/00000542-200101000-00015.
35. Lobastov K.V., Dementieva G.I., Laberko L.A. Current insights on the etiology and pathogenesis of venous thrombosis: Virchow’s triad revision. Flebologiya / Journal of Venous Disorders. 2019; 13 (3): 227–35 (in Russ.). https://doi.org/10.17116/flebo201913031227.
36. Lobastov K.V., Barinov V.E., Schastlivtsev I.V., Laberko L.A. Caprini score as individual risk assessment model of postoperative venous thromboembolism in patients with high surgical risk. Pirogov Russian Journal of Surgery. 2014; 114 (12): 16–23 (in Russ.).
37. Pandor A., Tonkins M., Goodacre S., et al. Risk assessment models for venous thromboembolism in hospitalised adult patients: a systematic review. BMJ Open. 2021; 11 (7): e045672. https://doi.org/10.1136/bmjopen-2020-045672.
38. Lobastov K.V., Kovalchuk A.V., Barganzhiya A.B., et al Adherence to the use of the Caprini score among Russian specialists: results of an electronic survey. Surgeon. 2022; 6: 54–66 (in Russ.). https://doi.org/10.33920/med-15-2206-06.
39. Gould M.K., Garcia D.A., Wren S.M., et al. Prevention of VTE in nonorthopedic surgical patients: antithrombotic therapy and prevention of thrombosis, 9 th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012; 141 (2 Suppl.): e227S–77S. https://doi.org/10.1378/chest.11-2297.
40. Pannucci C.J., Dreszer G., Wachtman C.F., et al. Postoperative enoxaparin prevents symptomatic venous thromboembolism in high-risk plastic surgery patients. Plast Reconstr Surg. 2011; 128 (5): 1093–103. https://doi.org/10.1097/PRS.0b013e31822b6817.
41. Obi A.T., Pannucci C.J., Nackashi A., et al. Validation of the Caprini venous thromboembolism risk assessment model in critically ill surgical patients. JAMA Surg. 2015; 150 (10): 941–8. https://doi.org/10.1001/jamasurg.2015.1841.
42. Yarlagadda B.B., Brook C.D., Stein D.J., Jalisi S. Venous thromboembolism in otolaryngology surgical inpatients receiving chemoprophylaxis. Head Neck. 2014; 36 (8): 1087–93. https://doi.org/10.1002/hed.23411.
43. Lobastov K., Barinov V., Schastlivtsev I., et al. Validation of the Caprini risk assessment model for venous thromboembolism in high-risk surgical patients in the background of standard prophylaxis. J Vasc Surgery. 2016; 4 (2): 153–60. https://doi.org/10.1016/j.jvsv.2015.09.004.
44. Serebriyskiy I.I. “Global” and “local” tests of hemostasis system in the diagnosis of hypercoagulation syndrome. Spravochnik zaveduyushchego kliniko-diagnosticheskoy laboratoriey / Guide for the Head of Clinical Diagnostic Laboratory. 2012; 12: 27–34 (in Russ.).
45. Yaretz Yu.I. Thromboelastography: main indicators, interpretation of results. Available at: https://www.rcrm.by/upload/science/posob_doctor/2018-26.pdf (in Russ.) (accessed 10.04.2024).
46. Shulutko A.M., Ataullakhanov F.I., Balandina A.N., et al. Application of thrombodynamics test to assess the state of hemostasis system. Мoscow: Sechenov University; 2015: 72 pp. (in Russ.).
47. Lobastov K., Dementieva G., Soshitova N., et al. Utilization of the Caprini score in conjunction with thrombodynamic testing reduces the number of unpredicted postoperative venous thromboembolism events in patients with colorectal cancer. J Vasc Surg Venous Lymphat Disord. 2020; 8 (1): 31–41. https://doi.org/10.1016/j.jvsv.2019.06.015.
48. Katelnitskaya O.V., Kit O.I., Guskova N.K., et al. Assessment of functional status of blood coagulation system in postoperative period in patients with gastrointestinal cancer. Bulletin of Higher Educational Institutions. North Caucasus Region. Natural Sciences. 2017; 4-2: 48–57 (in Russ.).
49. Petrikov A.S., Suchkov I.A., Roitman E.V., et al. Primary prevention of moderate- and high-risk venous thromboembolism in surgical patients with anterior abdominal wall hernias. Tromboz, gemostaz i reologiya / Thrombosis, Hemostasis and Rheology. 2024; 1: 57–70 (in Russ.). https://doi.org/10.25555/THR.2024.1.1087.
50. Wall V., Fleming K.I., Tonna J.E., et al. Anti-factor Xa measurements in acute care surgery patients to examine enoxaparin dose. Am J Surg. 2018; 216 (2): 222–9. https://doi.org/10.1016/j.amjsurg.2017.07.014.
51. Pannucci C.J., Fleming K.I., Bertolaccini C.B., et al. Assessment of anti-factor Xa levels of patients undergoing colorectal surgery given once-daily enoxaparin prophylaxis: a clinical study examining enoxaparin pharmacokinetics. JAMA Surg. 2019; 154 (8): 697–704. https://doi.org/10.1001/jamasurg.2019.1165.
52. Pannucci C.J., Fleming K.I., Holoyda K., et al. Enoxaparin 40 mg per day is inadequate for venous thromboembolism prophylaxis after thoracic surgical procedure. Ann Thorac Surg. 2018; 106 (2): 404–11. https://doi.org/10.1016/j.athoracsur.2018.02.085.
53. Pannucci C.J., Rockwell W.B., Ghanem M., et al. Inadequate enoxaparin dosing predicts 90-day venous thromboembolism risk among plastic surgery inpatients: an examination of enoxaparin pharmacodynamics. Plast Reconstr Surg. 2017; 139 (4): 1009–20. https://doi.org/10.1097/PRS.0000000000003159.
54. Khoursheed M., Al-Bader I., Al-Asfar F., et al. Therapeutic effect of low-molecular weight heparin and incidence of lower limb deep venous thrombosis and pulmonary embolism after laparoscopic bariatric surgery. Surg Laparosc Endosc Percutan Tech. 2013; 23 (6): 491–3. https://doi.org/10.1097/SLE.0b013e31828e3c92.
55. Rowan B.O., Kuhl D.A., Lee M.D., et al. Anti-Xa levels in bariatric surgery patients receiving prophylactic enoxaparin. Obes Surg. 2008; 18 (2): 162–6. https://doi.org/10.1007/s11695-007-9381-y.
56. Faraklas I., Ghanem M., Brown A., Cochran A. Evaluation of an enoxaparin dosing calculator using burn size and weight. J Burn Care Res. 2013; 34 (6): 621–7. https://doi.org/10.1097/BCR.0b013e3182a2a855.
57. Pannucci C.J., Fleming K.I., Bertolaccini C., et al. Optimal dosing of prophylactic enoxaparin after surgical procedures: results of the double-blind, randomized, controlled FIxed or Variable Enoxaparin (FIVE) Trial. Plast Reconstr Surg. 2021; 147 (4): 947–58. https://doi.org/10.1097/PRS.0000000000007780.
58. Wu T., Xia X., Chen W., et al. The effect of anti-Xa monitoring on the safety and efficacy of low-molecular-weight heparin anticoagulation therapy: a systematic review and meta-analysis. J Clin Pharm Ther. 2020; 45 (4): 602–8. https://doi.org/10.1111/jcpt.13169.
59. Verhoeff K., Raffael K., Connell M., et al. Relationship between anti-Xa level achieved with prophylactic low-molecular weight heparin and venous thromboembolism in trauma patients: a systematic review and meta-analysis. J Trauma Acute Care Surg. 2022; 93 (2): e61–70. https://doi.org/10.1097/TA.0000000000003580.
60. Guyatt G.H., Akl E.A., Crowther M. Executive summary: antithrombotic therapy and prevention of thrombosis: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2012; 141 (2 Suppl.): 7S–47S. https://doi.org/10.1378/chest.1412S3.
61. Hutt Centeno E., Militello M., Gomes M.P. Anti-Xa assays: what is their role today in antithrombotic therapy? Cleve Clin J Med. 2019; 86 (6): 417–25. https://doi.org/10.3949/ccjm.86a.18029.
62. Kufel W.D., Seabury R.W., Darko W., et al. Clinical feasibility of monitoring enoxaparin anti-xa concentrations: are we getting it right? Hosp Pharm. 2017; 52 (3): 214–20. https://doi.org/10.1310/hpj5203-214.
63. Smythe M.A., Priziola J., Dobesh P.P., et al. Guidance for the practical management of the heparin anticoagulants in the treatment of venous thromboembolism. J Thromb Thrombolysis. 2016; 41 (1): 165–86. https://doi.org/10.1007/s11239-015-1315-2.
64. Pezzuoli G., Neri Serneri G.G., Settembrini P., et al. Prophylaxis of fatal pulmonary embolism in general surgery using low-molecular weight heparin Cy 216: a multicentre, double-blind, randomized, controlled, clinical trial versus placebo (STEP). STEP-Study Group. Int Surg. 1989; 74 (4): 205–10.
65. Marassi A., Balzano G., Mari G., et al. Prevention of postoperative deep vein thrombosis in cancer patients. A randomized trial with low molecular weight heparin (CY 216). Int Surg. 1993; 78 (2): 166–70.
66. Bergqvist D., Flordal P.A., Friberg B., et al. Thromboprophylaxis with a low molecular weight heparin (tinzaparin) in emergency abdominal surgery. A double-blind multicenter trial. Vasa. 1996; 25 (2): 156–60.
67. Kakkar V.V., Boeckl O., Boneu B., et al. Efficacy and safety of a low-molecular-weight heparin and standard unfractionated heparin for prophylaxis of postoperative venous thromboembolism: European multicenter trial. World J Surg. 1997; 21 (1): 2–8. https://doi.org/10.1007/s002689900185.
68. Efficacy and safety of enoxaparin versus unfractionated heparin for prevention of deep vein thrombosis in elective cancer surgery: a double-blind randomized multicentre trial with venographic assessment. ENOXACAN Study Group. Br J Surg. 1997; 84 (8): 1099–103.
69. Creperio G., Marabini M., Ciocia G., et al. Evaluation of the effectiveness and safety of Fragmin (Kabi 2165) versus calcium heparin in the prevention of deep venous thrombosis in general surgery. Minerva Chir. 1990; 45 (17): 1101–6 (in Italian).
70. Garcea D., Martuzzi F., Santelmo N., et al. Post-surgical deep vein thrombosis prevention: evaluation of the risk/benefit ratio of fractionated and unfractionated heparin. Curr Med Res Opin. 1992; 12 (9): 572–83. https://doi.org/10.1185/03007999209111524.
71. Gazzaniga G.M., Angelini G., Pastorino G., et al. Enoxaparin in the prevention of deep venous thrombosis after major surgery: multicentric study. The Italian Study Group. Int Surg. 1993; 78 (3): 271–5.
72. Haas S. Low molecular weight heparins in the prevention of venous thromboembolism in nonsurgical patients. Semin Thromb Hemost. 1999; 25 (Suppl. 3): 101–5.
73. Hartl P., Brücke P., Dienstl E., Vinazzer H. Prophylaxis of thromboembolism in general surgery: comparison between standard heparin and fragmin. Thromb Res. 1990; 57 (4): 577–84. https://doi.org/10.1016/0049-3848(90)90074-m.
74. Hoffmann R., Largiadèr F. Perioperative prevention of thromboembolism with standard heparin and low molecular weight heparin, evaluation of postoperative hemorrhage. A double-blind, prospective, randomized and mono-center study. Langenbecks Arch Chir. 1992; 377 (5): 258–61 (in German). https://doi.org/10.1007/BF00189469.
75. Kakkar V.V., Cohen A.T., Edmonson R.A., et al. Low molecular weight versus standard heparin for prevention of venous thromboembolism after major abdominal surgery. The Thromboprophylaxis Collaborative Group. Lancet. 1993; 341 (8840): 259–65. https://doi.org/10.1016/0140-6736(93)92614-y.
76. Koppenhagen K., Tröster E., Matthes M., Häring R. Prevention of thrombosis with low molecular weight heparin as the only substance and/or with DHE: results of clinical studies. Langenbecks Arch Chir Suppl II Verh Dtsch Ges Chir. 1990; 1163–6 (in German).
77. Koppenhagen K., Adolf J., Matthes M., et al. Low molecular weight heparin and prevention of postoperative thrombosis in abdominal surgery. Thromb Haemost. 1992; 67 (6): 627–30.
78. McLeod R.S., Geerts W.H., Sniderman K.W., et al. Subcutaneous heparin versus low-molecular-weight heparin as thromboprophylaxis in patients undergoing colorectal surgery: results of the Canadian colorectal DVT prophylaxis trial: a randomized, double-blind trial. Ann Surg. 2001; 233 (3): 438–44. https://doi.org/10.1097/00000658-200103000-00020.
79. Moreno Gonzalez E., Fontcuberta J., de la Llama F. Prophylaxis of thromboembolic disease with RO-11 (ROVI), during abdominal surgery. EMRO1 (Grupo Fstudio Multicintrico RO-11). Hepatogastroenterology. 1996; 43 (9): 744–7.
80. Nurmohamed M.T., Verhaeghe R., Haas S., et al. A comparative trial of a low molecular weight heparin (enoxaparin) versus standard heparin for the prophylaxis of postoperative deep vein thrombosis in general surgery. Am J Surg. 1995; 169 (6): 567–71. https://doi.org/10.1016/s0002-9610(99)80222-0.
81. Wolf H., Encke A., Haas S., Welzel D. Comparison of the efficacy and safety of Sandoz low molecular weight heparin and unfractionated heparin: interim analysis of a multicenter trial. Semin Thromb Hemost. 1991; 17 (4): 343–6. https://doi.org/10.1055/s-2007-1002632.
82. Liezorovicz A., Picolet H., Peyrieux J.C., Boissel J.P. Prevention of perioperative deep vein thrombosis in general surgery: a multicentre double blind study comparing two doses of Logiparin and standard heparin. H.B.P.M. Research Group. Br J Surg. 1991; 78 (4): 412–6. https://doi.org/10.1002/bjs.1800780410.
83. Breddin H.K. Low molecular weight heparins in the prevention of deep-vein thrombosis in general surgery. Semin Thromb Hemost. 1999; 25 (Suppl. 3): 83–9.
84. Jørgensen L.N., Wille-Jørgensen P., Hauch O. Prophylaxis of postoperative thromboembolism with low molecular weight heparins. Br J Surg. 1993; 80 (6): 689–704. https://doi.org/10.1002/bjs.1800800607.
85. Koch A., Ziegler S., Breitschwerdt H., Victor N. Low molecular weight heparin and unfractionated heparin in thrombosis prophylaxis: meta-analysis based on original patient data. Thromb Res. 2001; 102 (4): 295–309. https://doi.org/10.1016/s0049-3848(01)00251-1.
86. Koch A., Bouges S., Ziegler S., et al. Low molecular weight heparin and unfractionated heparin in thrombosis prophylaxis after major surgical intervention: update of previous meta-analyses. Br J Surg. 1997; 84 (6): 750–9.
87. Leizorovicz A., Haugh M.C., Chapuis F.R., et al. Low molecular weight heparin in prevention of perioperative thrombosis. BMJ. 1992; 305 (6859): 913–20. https://doi.org/10.1136/bmj.305.6859.913.
88. Mismetti P., Laporte S., Darmon J.Y., et al. Meta-analysis of low molecular weight heparin in the prevention of venous thromboembolism in general surgery. Br J Surg. 2001; 88 (7): 913–30. https://doi.org/10.1046/j.0007-1323.2001.01800.x.
89. Nurmohamed M.T., Rosendaal F.R., Büller H.R., et al. Low-molecular-weight heparin versus standard heparin in general and orthopaedic surgery: a meta-analysis. Lancet. 1992; 340 (8812): 152–6. https://doi.org/10.1016/0140-6736(92)93223-a.
90. Palmer A.J., Schramm W., Kirchhof B., Bergemann R. Low molecular weight heparin and unfractionated heparin for prevention of thromboembolism in general surgery: a meta-analysis of randomised clinical trials. Haemostasis. 1997; 27 (2): 65–74. https://doi.org/10.1159/000217436.
91. Wille-Jørgensen P., Rasmussen M.S., Andersen B.R., Borly L. Heparins and mechanical methods for thromboprophylaxis in colorectal surgery. Cochrane Database Syst Rev. 2003; 4: CD001217. https://doi.org/10.1002/14651858.CD001217.
92. Warkentin T.E., Roberts R.S., Hirsh J., Kelton J.G. An improved definition of immune heparin-induced thrombocytopenia in postoperative orthopedic patients. Arch Intern Med. 2003; 163 (20): 2518–24. https://doi.org/10.1001/archinte.163.20.2518.
93. Warkentin T.E., Levine M.N., Hirsh J., et al. Heparin-induced thrombocytopenia in patients treated with low-molecular-weight heparin or unfractionated heparin. N Engl J Med. 1995; 332 (20): 1330–5. https://doi.org/10.1056/NEJM199505183322003.
94. Shevchenko Y.L., Lyadov K.V., Stoiko Y.M., et al. Prevention of thromboembolic complications in a multidisciplinary surgical hospital. Lechebnoe delo. 2005; 3: 3–15 (in Russ.).
95. Shevchenko Yu.L., Lyadov K.V., Stoyko Y.M., et al. The “DecisionMatrix” computer program for determining the individual risk of thromboembolic complications in surgical patients. Pirogov Russian Journal of Surgery. 2004; 7: 38–41 (in Russ.).
96. Zamyatin M.N., Stoyko Yu.M., Petrova N.V. The pathophysiological basis of a choice of anticoagulants for prophylaxis and treatment of thrombotic complications in a multidisciplinary hospital. Klinicheskaya patofiziologiya / Clinical Pathophysiology. 2017; 22 (1): 3–10 (in Russ.).
97. Kalodiki E., Leong W. SASAT (South Asian Society on Atherosclerosis & Thrombosis) proposal for regulatory guidelines for generic low-molecular weight heparins (LMWHs). Clin Appl Thromb Hemost. 2009; 15 (1): 8–11. https://doi.org/10.1177/1076029608329113.
98. Agnelli G., Bergqvist D., Cohen A.T., et al. Randomized clinical trial of postoperative fondaparinux versus perioperative dalteparin for prevention of venous thromboembolism in high-risk abdominal surgery. Br J Surg. 2005; 92 (10): 1212–20. https://doi.org/10.1002/bjs.5154.
99. Collins R., Baigent C., Sandercock P., Peto R. Antiplatelet therapy for thromboprophylaxis: the need for careful consideration of the evidence from randomised trials. Antiplatelet Trialists’ Collaboration. BMJ. 1994; 309 (6963): 1215–7. https://doi.org/10.1136/bmj.309.6963.1215.
100. Bitsadze V.O., Slukhanchuk E.V., Khizroeva J.Kh., et al. Anticoagulant, anti-inflammatory, antiviral and antitumor properties of heparins. Obstetrics, Gynecology and Reproduction. 2021; 15 (3): 295–312 (in Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.216.
101. An open randomized cross-comparative study of pharmacodynamics (pharmacodynamic equivalence), safety and tolerability of Nadroparinum calcium preparations, solution for subcutaneous administration (Sotex Pharmaceutical Company CJSC, Russia), and Fraxiparine, a solution for subcutaneous administration (Aspen Pharma Trading Limited, Ireland) during single subcutaneous injection to healthy volunteers. GRLS Base. Protocol No. KI/1118-1. Available at: https://grlsbase.ru/clinicaltrails/clintrail/480 (in Russ.) (accessed 10.04.2024).
102. Macie C., Forbes L., Foster G.A., Douketis J.D. Dosing practices and risk factors for bleeding in patients receiving enoxaparin for the treatment of an acute coronary syndrome. Chest. 2004; 125 (5): 1616–21. https://doi.org/10.1378/chest.125.5.1616.
103. Witt D.M., Nieuwlaat R., Clark N.P., et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: optimal management of anticoagulation therapy. Blood Adv. 2018; 2 (22): 3257–91. https://doi.org/10.1182/bloodadvances.2018024893.
104. Spyropoulos A.C., Preblick R., Kwong W.J., et al. Is adherence to the American College of Chest Physicians recommended anticoagulation treatment duration associated with different outcomes among patients with venous thromboembolism? Clin Appl Thromb Hemost. 2017; 23 (6): 532–41. https://doi.org/10.1177/1076029616680475.
105. Frolov D.V., Petrov V.I., Sukhanova G.A., et al. Primary prevention of venous thromboembolism: current state. Flebologiya / Journal of Venous Disorders. 2022; 16 (2): 164–74 (in Russ.). https://doi.org/10.17116/flebo202216021164.
106. Instructions for the medical use of the drug Fraxiparine ® . The State Register of Medicines. Available at: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=47fefb31-a433-4f0a-a1c9-d82b3f3e4476 (in Russ.) (accessed 10.04.2024).
107. Parkin L., Sweetland S., Balkwill A., et al. Body mass index, surgery, and risk of venous thromboembolism in middle-aged women: a cohort study. Circulation. 2012; 125 (15): 1897–904. https://doi.org/10.1161/CIRCULATIONAHA.111.063354.
108. Pahlkotter M.K., Mohidul S., Moen M.R., et al. BMI and VTE risk in emergency general surgery, does size matter? An ACS-NSQIP database analysis. Am Surg. 2020; 86 (12): 1660–5. https://doi.org/10.1177/0003134820940272.
109. Rahmani J., Haghighian Roudsari A., Bawadi H., et al. Relationship between body mass index, risk of venous thromboembolism and pulmonary embolism: a systematic review and dose-response meta-analysis of cohort studies among four million participants. Thromb Res. 2020; 192: 64–72. https://doi.org/10.1016/j.thromres.2020.05.014.
110. Venclauskas L., Maleckas A., Arcelus J. European guidelines on perioperative venous thromboembolism prophylaxis: surgery in the obese patient. Eur J Anaesthesiol. 2018; 35 (2): 147–53. https://doi.org/10.1097/EJA.0000000000000703.
111. Freeman A.L., Pendleton R.C., Rondina M.T. Prevention of venous thromboembolism in obesity. Expert Rev Cardiovasc Ther. 2010; 8 (12): 1711–21. https://doi.org/10.1586/erc.10.160.
112. Shelkrot M., Miraka J., Perez M.E. Appropriate enoxaparin dose for venous thromboembolism prophylaxis in patients with extreme obesity. Hosp Pharm. 2014; 49 (8): 740–7. https://doi.org/10.1310/hpj4908-740.
113. Liu J., Qiao X., Wu M., et al. Strategies involving low-molecular-weight heparin for the treatment and prevention of venous thromboembolism in patients with obesity: a systematic review and meta-analysis. Front Endocrinol. 2023; 14: 1084511. https://doi.org/10.3389/fendo.2023.1084511.
114. Simone E.P., Madan A.K., Tichansky D.S., et al. Comparison of two low molecular weight heparin dosing regimens for patients undergoing laparoscopic bariatric surgery. Surg Endosc. 2008; 22 (11): 2392–5. https://doi.org/10.1007/s00464-008-9997-6.
115. Freeman A., Horner T., Pendleton R.C., Rondina M.T. Prospective comparison of three enoxaparin dosing regimens to achieve target antifactor Xa levels in hospitalized, medically ill patients with extreme obesity. Am J Hematol. 2012; 87 (7): 740–3. https://doi.org/10.1002/ajh.23228.
116. Ludwig K.P., Simons H.J., Mone M., et al. Implementation of an enoxaparin protocol for venous thromboembolism prophylaxis in obese surgical intensive care unit patients. Ann Pharmacother. 2011; 45 (11): 1356–62. https://doi.org/10.1345/aph.1Q313.
117. Chang C.K., Higgins R.M., Rein L., et al. Effectiveness of body mass index-based prophylactic enoxaparin dosing in bariatric surgery patients. J Surg Res. 2023; 287: 168–75. https://doi.org/10.1016/j.jss.2023.01.018.
118. Garcia D.A., Baglin T.P., Weitz J.I., et al. Parenteral anticoagulants: antithrombotic therapy and prevention of thrombosis, 9 th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012; 141 (2 Suppl.): e24S–43S. https://doi.org/10.1378/chest.11-2291.
119. Witt D.M., Nieuwlaat R., Clark N.P., et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: optimal management of anticoagulation therapy. Blood Adv. 2018; 2 (22): 3257–91. https://doi.org/10.1182/bloodadvances.2018024893.
120. Stoyko Yu.M., Zamyatin M.N. Specific prevention of thromboembolic complications in patients with high and very high risk. Trudnyy patsient. 2007; 5 (6–7): 35–8 (in Russ.).
121. Scurr J.H., Coleridge-Smith P.D., Hasty J.H. Deep venous thrombosis: a continuing problem. BMJ. 1988; 297 (6640): 28. https://doi.org/10.1136/bmj.297.6640.28.
122. Arcelus J.I., Caprini J.A., Traverso C.I. Venous thromboembolism after hospital discharge. Semin Thromb Hemost. 1993; 19 (Suppl. 1): 142–6.
123. Caron A., Depas N., Chazard E., et al. Risk of pulmonary embolism more than 6 weeks after surgery among cancer-free middle-aged patients. JAMA Surg. 2019; 154 (12): 1126–32. https://doi.org/10.1001/jamasurg.2019.3742.
124. Arcelus J.I., Monreal M., Caprini J.A., et al. Clinical presentation and time-course of postoperative venous thromboembolism: results from the RIETE Registry. Thromb Haemost. 2008; 99 (3): 546–51. https://doi.org/10.1160/TH07-10-0611.
125. Bergqvist D., Lindblad B. A 30-year survey of pulmonary embolism verified at autopsy: an analysis of 1274 surgical patients. Br J Surg. 1985; 72 (2): 105–8. https://doi.org/10.1002/bjs.1800720211.
126. Agnelli G., Bolis G., Capussotti L., et al. A clinical outcome-based prospective study on venous thromboembolism after cancer surgery: the @RISTOS project. Ann Surg. 2006; 243 (1): 89–95. https://doi.org/10.1097/01.sla.0000193959.44677.48.
127. Merkow R.P., Bilimoria K.Y., McCarter M.D., et al. Post-discharge venous thromboembolism after cancer surgery: extending the case for extended prophylaxis. Ann Surg. 2011; 254 (1): 131–7. https://doi.org/10.1097/SLA.0b013e31821b98da.
128. Expósito-Ruiz M., Arcelus J.I., Caprini J.A., et al. Timing and characteristics of venous thromboembolism after noncancer surgery. J Vasc Surg Venous Lymphat Disord. 2021; 9 (4): 859–67.e2. https://doi.org/10.1016/j.jvsv.2020.11.017.
129. Singh T., Lavikainen L.I., Halme A.L.E., et al. Timing of symptomatic venous thromboembolism after surgery: meta-analysis. Br J Surg. 2023; 110 (5): 553–61. https://doi.org/10.1093/bjs/znad035.
130. Egger B., Schmid S.W., Naef M., et al. Efficacy and safety of weight-adapted nadroparin calcium vs. heparin sodium in prevention of clinically evident thromboembolic complications in 1,190 general surgical patients. Dig Surg. 2000; 17 (6): 602–9. https://doi.org/10.1159/000051969.
131. Lausen I., Jensen R., Jorgensen L.N., et al. Incidence and prevention of deep venous thrombosis occurring late after general surgery: randomised controlled study of prolonged thromboprophylaxis. Eur J Surg. 1998; 164 (9): 657–63. https://doi.org/10.1080/110241598750005534.
132. Heit J.A., Melton L.J. 3 rd , Lohse C.M., et al. Incidence of venous thromboembolism in hospitalized patients vs community residents. Mayo Clin Proc. 2001; 76 (11): 1102–10. https://doi.org/10.4065/76.11.1102.
133. Rasmussen M.S. Preventing thromboembolic complications in cancer patients after surgery: a role for prolonged thromboprophylaxis. Cancer Treat Rev. 2002; 28 (3): 141–4. https://doi.org/10.1016/s0305-7372(02)00043-9.
134. Bergqvist D., Agnelli G., Cohen A.T., et al. Duration of prophylaxis against venous thromboembolism with enoxaparin after surgery for cancer. N Engl J Med. 2002; 346 (13): 975–80. https://doi.org/10.1056/NEJMoa012385.
135. Rasmussen M.S., Jorgensen L.N., Wille-Jørgensen P., et al. Prolonged prophylaxis with dalteparin to prevent late thromboembolic complications in patients undergoing major abdominal surgery: a multicenter randomized open-label study. J Thromb Haemost. 2006; 4 (11): 2384–90. https://doi.org/10.1111/j.1538-7836.2006.02153.x.
136. Felder S., Rasmussen M.S., King R., et al. Prolonged thrombophylaxis with low molecular weight heparin for abdominal or pelvic surgery. Cochrane Database Syst Rev. 2019: 3 (3): CD004318. https://doi.org/10.1002/14651858.CD004318.pub4.
137. Kakkar V.V., Balibrea J.L., Martínez-González J., Prandoni P. Extended prophylaxis with bemiparin for the prevention of venous thromboembolism after abdominal or pelvic surgery for cancer: the CANBESURE randomized study. J Thromb Haemost. 2010; 8 (6): 1223–9. https://doi.org/10.1111/j.1538-7836.2010.03892.x.
138. Kaatz S., Spyropoulos A.C. Venous thromboembolism prophylaxis after hospital discharge: transition to preventive care. Hosp Pract. 2011; 39 (3): 7–15. https://doi.org/10.3810/hp.2011.08.574.
139. Amin A.N., Lenhart G., Princic N., et al. Retrospective administrative database study of the time period of venous thromboembolism risk during and following hospitalization for major orthopedic or abdominal surgery in real-world US patients. Hosp Pract. 2011; 39 (2): 7–17. https://doi.org/10.3810/hp.2011.04.390.
140. Clayton J.K., Anderson J.A., McNicol G.P. Preoperative prediction of postoperative deep vein thrombosis. Br Med J. 1976; 2 (6041): 910–2. https://doi.org/10.1136/bmj.2.6041.910.
141. Knoll W., Fergusson N., Ivankovic V., et al. Extended thromboprophylaxis following major abdominal/pelvic cancer-related surgery: a systematic review and meta-analysis of the literature. Thromb Res. 2021: 204: 114–22. https://doi.org/10.1016/j.thromres.2021.06.010.
What is already known about thе subject?
- The issues of primary prevention and treatment of venous thrombo-embolism (VTE) in surgical patients keep their priority
- The optimal and validated model for individual VTE prediction in surgical patients is the Caprini score
- The optimal strategy of VTE pharmacologic prevention in surgical patients includes: assessing surgical intervention; identifying indications taking into account risk factors and Caprini score (presence of contraindications for anticoagulant administration); determining the timing of anticoagulant administration, selecting the drug, calculating daily dose and frequency of injections, estimating the duration of pharmacologic prevention
What are the new findings?
- A review of scientific publications on the frequency of development and risk factors of VTE and bleeding in surgical patients, primary prevention of postoperative VTE using low molecular weight heparins was carried out
- Additional amendments for the national clinical guidelines “Prevention, diagnosis and treatment of deep vein thrombosis. Guidelines of Russian experts” were proposed
How might it impact the clinical practice in the foreseeable future?
- Provided there is a technical possibility, it is recommended to use laboratory control to measure anti-Xa activity after the administration of unfractionated and low molecular weight heparin to assess individual response in patients with high, very high, and extremely high risk of VTE, including comorbid patients, for monitoring and dosage adjustment. It is feasible to widely implement this method in clinical practice of surgical hospitals
Review
For citations:
Petrikov А.S., Vavilova Т.V., Vardanyan А.V., Zamyatin М.N., Zolotukhin I.А., Lobastov К.V., Roitman Е.V., Seliverstov Е.I., Stoyko Yu.М., Suchkov I.А. Primary prevention of venous thromboembolism with low molecular weight heparins in surgical patients – 2024: Council of Experts resolution. FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2024;17(2):251-278. (In Russ.) https://doi.org/10.17749/2070-4909/farmakoekonomika.2024.250

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.