Economic aspects of using new chemotherapy regimens for multidrug and extensively drugresistant tuberculosis
https://doi.org/10.17749/2070-4909/farmakoekonomika.2022.131
Abstract
Objective: to systematize data on cost-effectiveness evaluation of new multidrug and extensively drug-resistant tuberculosis (MDR/XDR-TB) chemotherapy regimens.
Material and methods. An analysis of 19 publications devoted to the economic evaluation of the treatment of active MDR/XDR-TB was carried out. The literature search was performed in the electronic databases PubMed/MEDLINE, Google Scholar, eLibrary for the period from January 2015 to February 2022 inclusively.
Results. Economic efficiency was studied in high-, middleand low-income countries. All publications contained calculation of treatment costs, and a third of the studies also estimated additional costs. Bedaquiline, delamanid, and pretomanid regimens were included in treatment alone or compared with a background regimen. The most commonly used economic model was the Markov one. To compare primary outcomes, most studies assessed disabilityand quality-adjusted life years. The overall cost of MDR/XDR-TB treatment varied by country income level. In all cases, bedaquiline-based regimens represented a cost-effective alternative to previous treatment, showed high efficacy in MDR/XDR-TB therapy, and were more cost-effective than delamanid regimens.
Conclusion. Cost-effective interventions for active MDR/XDR-TB therapy should include the introduction of new chemotherapy regimens, reduced hospital stays and decentralized treatment, which is especially relevant in countries with high tuberculosis burden.
About the Author
А. V. KukurikaRussian Federation
Anastasia V. Kukurika – Phthisiologist, RSCI SPIN-code: 7973-8162.
1а Shopin Str., Makeyevka 86112, Donetsk People's Republic
References
1. World Health Organization. Global tuberculosis report 2020. URL: https://www.who.int/publications-detail-redirect/9789240013131 (дата обращения 03.07.2022).
2. Практический справочник ВОЗ по туберкулезу. Модуль 4. Лечение. Лечение лекарственно-устойчивого туберкулеза. URL: https://apps.who.int/iris/handle/10665/339992?show=full (дата обращения 03.07.2022).
3. Маркелов Ю.М., Лесонен А.С. Клинико-экономические аспекты повышения эффективности лечения туберкулеза с множественной лекарственной устойчивостью. Туберкулез и болезни легких. 2020; 98 (9): 50–4. https://doi.org/10.21292/2075-1230-2020-98-9-50-54.
4. Маркелов Ю.М., Лесонен А.С., Михайлова Е.Д., Кузнецов Н.В. Анализ бюджетных затрат при различной эффективности лечения впервые выявленных больных туберкулезом с множественной лекарственной устойчивостью возбудителя. Фармакоэкономика: теория и практика. 2021; 9 (3): 5–10. https://doi.org/10.30809/phe.3.2021.1.
5. Васильева И.А., Самойлова А.Г., Рудакова А.В. и др. Экономическое обоснование применения новых схем химиотерапии для лечения больных туберкулезом с широкой лекарственной устойчивостью. Туберкулез и болезни легких. 2018; 96 (6): 7–14. https://doi.org/10.21292/2075-1230-2018-96-6-7-14.
6. Николенко Н.Ю., Кудлай Д.А., Докторова Н.П. Фармакоэпидемиология и фармакоэкономика туберкулеза с множественной и широкой лекарственной устойчивостью возбудителя. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2021; 14 (2): 235–48. https://doi.org/10.17749/2070-4909/farmakoekonomika.2021.089.
7. Fekadu G., Yao J., You J.H.S. A systematic review of pharmacoeconomic evaluations on oral diarylquinoline-based treatment for drugresistant tuberculosis: from high to low burden countries. Expert Rev Pharmacoecon Outcomes Res. 2021; 21 (5): 897–910. https://doi.org/10.1080/14737167.2021.1925111.
8. Byun J.Y., Kim H.L., Lee E.K., Kwon S.H. A systematic review of economic evaluations of active tuberculosis treatments. Front Pharmacol. 2021; 12: 736986. https://doi.org/10.3389/fphar.2021.736986.
9. Padmasawitri T.I.A., Saragih S.M., Frederix G.W., et al. Managing uncertainties due to limited evidence in economic evaluations of novel anti-tuberculosis regimens: a systematic review. Pharmacoecon Open. 2020: 4; 223–33. https://doi.org/10.1007/s41669-019-0162-z.
10. Gomez G.B., Dowdy D.W., Bastos M.L., et al. Cost and costeffectiveness of tuberculosis treatment shortening: a model-based analysis. BMC Infect Dis. 2016; 16 (1): 726. https://doi.org/10.1186/s12879-016-2064-3.
11. Gotham D., Fortunak J., Pozniak A., et al. Estimated generic prices for novel treatments for drug-resistant tuberculosis. J Antimicrob Chemother. 2017; 72 (4): 1243–52. https://doi.org/10.1093/jac/dkw522.
12. Greenaway C., Pareek M., Abou Chakra C.N., et al. The effectiveness and cost-effectiveness of screening for latent tuberculosis among migrants in the EU/EEA: a systematic review. Euro Surveill. 2018; 23 (14): 17-00543. https://doi.org/10.28071560-7917.ES.2018.23.14.1700543.
13. Alemayehu S., Yigezu A., Hailemariam D., Hailu A. Costeffectiveness of treating multidrug-resistant tuberculosis in treatment initiative centers and treatment follow-up centers in Ethiopia. PLoS One. 2020; 15 (7): e0235820. https://doi.org/10.1371/journal.pone.0235820.
14. Zwerling A., Dowdy D., von Delft A., et al. Incorporating social justice and stigma in cost-effectiveness analysis: drug-resistant tuberculosis treatment. Int J Tuberc Lung Dis. 2017; 21 (11): 69–74. https://doi.org/10.5588/ijtld.16.0839.
15. McNaughton A., Blackmore T., McNaughton H. Comprehensive cost of treating one patient with MDR/pre-XDR-TB in Wellington, New Zealand. Eur Respir J. 2016; 48 (4): 1256–9. https://doi.org/10.1183/13993003.00876-2016.
16. Marks S.M., Mase S.R., Morris S.B. Systematic review, metaanalysis, and cost-effectiveness of treatment of latent tuberculosis to reduce progression to multidrug-resistant tuberculosis. Clin Infect Dis. 2017; 64 (12): 1670–7. https://doi.org/10.1093/cid/cix208.
17. John D., Chatterjee P., Murthy S., et al. Cost effectiveness of decentralised care model for managing MDR-TB in India. Indian J Tuberc. 2018; 65 (3): 208–17. https://doi.org/10.1016/j.ijtb.2017.08.031.
18. Kairu A., Orangi S., Oyando R., et al. Cost of TB services in healthcare facilities in Kenya (No 3). Int J Tuberc Lung Dis. 2021; 25 (12): 1028–34. https://doi.org/10.5588/ijtld.21.0129.
19. Loveday M., Wallengren K., Reddy T., et al. MDR-TB patients in KwaZulu-Natal, South Africa: cost-effectiveness of 5 models of care. PLoS One. 2018; 13 (4): e0196003. https://doi.org/10.1371/journal.pone.0196003.
20. Nsengiyumva N.P., Mappin-Kasirer B., Oxlade O., et al. Evaluating the potential costs and impact of digital health technologies for tuberculosis treatment support. Eur Respir J. 2018; 52 (5): 1801363. https://doi.org/10.1183/13993003.01363-2018.
21. Van Rensburg C., Berhanu R., Hirasen K., et al. Cost outcome analysis of decentralized care for drug-resistant tuberculosis in Johannesburg, South Africa. PLoS One. 2019; 14 (6): e0217820. https://doi.org/10.1371/journal.pone.0217820.
22. Hao X., Lou H., Bai J., et al. Cost-effectiveness analysis of Xpert in detecting Mycobacterium tuberculosis: a systematic review. Int J Infect Dis. 2020; 95: 98–105. https://doi.org/10.1016/j.ijid.2020.03.078.
23. Laurence Y.V., Griffiths U.K., Vassall A. Costs to health services and the patient of treating tuberculosis: a systematic literature review. Pharmacoeconomics. 2015; 33 (9): 939–55. https://doi.org/10.1007/s40273-015-0279-6.
24. Sagili K.D., Muniyandi M., Nilgiriwala K.S., et al. Cost-effectiveness of GeneXpert and LED-FM for diagnosis of pulmonary tuberculosis: a systematic review. PLoS One. 2018; 13 (10): e0205233. https://doi.org/10.1371/journal.pone.0205233.
25. Ionescu A.M., Mpobela Agnarson A., Kambili C., et al. Bedaquilineversus injectable-containing drug-resistant tuberculosis regimens: a cost-effectiveness analysis. Expert Rev Pharmacoecon Outcomes Res. 2018; 18 (6): 677–89. https://doi.org/10.1080/14737167.2018.1507821.
26. Machlaurin A., Pol S.V., Setiawan D., et al. Health economic evaluation of current vaccination strategies and new vaccines against tuberculosis: a systematic review. Expert Rev Vaccines. 2019; 18 (9): 897–911. https://doi.org/10.1080/14760584.2019.1651650.
27. Feuth T., Patovirta R.L., Grierson S., et al. Costs of multidrugresistant TB treatment in Finland and Estonia affected by the 2019 WHO guidelines. Int J Tuberc Lung Dis. 2021; 25 (7): 554–9. https://doi.org/10.5588/ijtld.20.0892.
28. Masuku S.D., Berhanu R., Van Rensburg C., et al. Managing multidrug-resistant tuberculosis in South Africa: a budget impact analysis. Int J Tuberc Lung Dis. 2020; 24 (4): 376–82. https://doi.org/10.5588/ijtld.19.0409.
29. Bada F.O., Blok N., Okpokoro E., et al. Cost comparison of ninemonth treatment regimens with 20-month standardized care for the treatment of rifampicin-resistant/multi-drug resistant tuberculosis in Nigeria. PLoS One. 2020; 15 (12): e0241065. https://doi.org/10.1371/journal.pone.0241065.
30. Lu X., Smare, C., Kambili C., et al. Health outcomes of bedaquiline in the treatment of multidrug-resistant tuberculosis in selected high burden countries. BMC Health Serv Res. 2017; 17 (1): 87. https://doi.org/10.1186/s12913-016-1931-3.
31. Sweeney S., Gomez G., Kitson N., et al. Cost-effectiveness of new MDR-TB regimens: study protocol for the TB-PRACTECAL economic evaluation substudy. BMJ Open. 2020; 10 (10): e036599. https://doi.org/10.1136/bmjopen-2019-036599.
32. Diel R., Sotgiu G., Andres S., et al. Cost of multidrug resistant tuberculosis in Germany – an update. Int J Infect Dis. 2021; 103: 102–9. https://doi.org/10.1016/j.ijid.2020.10.084.
33. Wirth D., Dass R., Hettle R. Cost-effectiveness of adding novel or group 5 interventions to a background regimen for the treatment of multidrug-resistant tuberculosis in Germany. BMC Health Serv Res. 2017; 17 (1): 182. https://doi.org/10.1186/s12913-017-2118-2.
34. Schnippel K., Firnhaber C., Conradie F., et al. Incremental cost effectiveness of bedaquiline for the treatment of rifampicin-resistant tuberculosis in South Africa: model-based analysis. Appl Health Econ Health Policy. 2018; 16 (1): 43–54. https://doi.org/10.1007/s40258017-0352-8.
35. Schnippel K., Firnhaber C., Page-Shipp L., Sinanovic E. Impact of adverse drug reactions on the incremental cost-effectiveness of bedaquiline for drug-resistant tuberculosis. Int J Tuberc Lung Dis. 2018; 22 (8): 918–25. https://doi.org/10.5588/ijtld.17.0869.
36. Wolfson L.J., Gibbert J., Wirth D., Diel R. Cost-effectiveness of incorporating bedaquiline into a treatment regimen for MDR/XDR-TB in Germany. Eur Respir J. 2015; 46 (6): 1826–9. https://doi.org/10.1183/13993003.00811-2015.
37. Diel R., Hittel N., Schaberg T. Cost effectiveness of treating multidrug resistant tuberculosis by adding DeltybaTM to background regimens in Germany. Respir Med. 2015; 109 (5): 632–41. https://doi.org/10.1016/j.rmed.2015.01.017.
38. Wolfson L.J., Walker A., Hettle R., et al. Cost-effectiveness of adding bedaquiline to drug regimens for the treatment of multidrug-resistant tuberculosis in the UK. PLoS One. 2015; 10 (3): e0120763. https://doi.org/10.1371/journal.pone.0120763.
39. Codecasa L.R., Toumi M., D’Ausilio A., et al. Cost-effectiveness of bedaquiline in MDR and XDR tuberculosis in Italy. J Mark Access Health Pol. 2017; 5 (1): 1283105. https://doi.org/10.1080/20016689.2017.1283105.
40. Fan Q., Ming W.K., Yip W.Y., You J.H.S. Cost-effectiveness of bedaquiline or delamanid plus background regimen for multidrugresistant tuberculosis in a high-income intermediate burden city of China. Int J Infect Dis. 2019; 78: 44–9. https://doi.org/10.1016/j.ijid.2018.10.007.
41. Mpobela Agnarson A., Williams A., Kambili C., et al. The costeffectiveness of a bedaquiline-containing short-course regimen for the treatment of multidrug-resistant tuberculosis in South Africa. Expert Rev Anti Infect Ther. 2020; 18 (5): 475-83. https://doi.org/10.1080/14787210.2020.1742109.
42. Gomez G.B., Siapka M., Conradie F., et al. Cost-effectiveness of bedaquiline, pretomanid and linezolid for treatment of extensively drug-resistant tuberculosis in South Africa, Georgia and the Philippines. BMJ Open. 2021; 11 (12): e051521. https://doi.org/10.1136/bmjopen-2021-051521.
43. Mulder C., Rupert S., Setiawan E., et al. Budgetary impact of using BPaL for treating extensively drug-resistant tuberculosis. BMJ Glob Health. 2022; 7 (1): e007182. https://doi.org/10.1136/bmjgh-2021-007182.
44. Park H.Y., Ku H.M., Sohn H.S., et al. Cost-effectiveness of bedaquiline for the treatment of multidrug-resistant tuberculosis in the Republic of Korea. Clin Ther. 2016; 38 (3): 655–67.e1-2. https://doi.org/10.1016/j.clinthera.2016.01.023.
Review
For citations:
Kukurika А.V. Economic aspects of using new chemotherapy regimens for multidrug and extensively drugresistant tuberculosis. FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2022;15(3):353-362. (In Russ.) https://doi.org/10.17749/2070-4909/farmakoekonomika.2022.131

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.