Preview

FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology

Advanced search

Artificial intelligence in healthcare: possibilities of patent protection

https://doi.org/10.17749/2070-4909/farmakoekonomika.2021.063

Abstract

The article provides an overview of the advantages and issues associated with the use of artificial intelligence (AI) and machine learning (ML) in medicine. Based on the analysis of scientific publications, the leading healthcare areas using AI and ML have been identified. The applied problems that modern technologies allow to solve are described, as well as the goals that can be achieved using such technologies. The legal protection issues of technologies using AI are highlighted. A comparison is given of the key aspects of copyright and patent law, and the advantages of patent law and comprehensive patent protection of technologies for process automation in healthcare are presented. The possibilities of complex patent protection and its strategy in the leading areas of AI use in healthcare are considered on specific examples.

About the Authors

T. N. Erivantseva
Federal Institute of Industrial Property
Russian Federation

Erivantseva Tatyana Nikolaevna – Deputy Director. РИНЦ SPIN-код: 5161-0391

30 corp. 1 Berezhkovskaya Naberezhnaya, Moscow 121059, Russia



Yu. V. Blokhina
Federal Institute of Industrial Property
Russian Federation

Blokhina Yulia Valeryevna – Head of Department of Medicine and Medical Technology

30 corp. 1 Berezhkovskaya Naberezhnaya, Moscow 121059, Russia



References

1. Schork N.J. Artificial intelligence and personalized medicine. Cancer Treat Res. 2019; 178: 265–83. https://doi.org/10.1007/978-3-030-16391-4_11.

2. Davenport T., Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc J. 2019; 6 (2): 94–8. https://doi.org/10.7861/futurehosp.6-2-94.

3. Uddin M., Wang Y., Woodbury-Smith M. Artificial intelligence for precision medicine in neurodevelopmental disorders. NPJ Digit. Med. 2019; 2: 112. https://doi.org/10.1038/s41746-019-0191-0.

4. Mehta N., Pandit A., Shukla S. Transforming healthcare with big data analytics and artificial intelligence: a systematic mapping study. J Biomed Inform. 2019; 100: 103311. https://doi.org/10.1016/j.jbi.2019.103311.

5. El Naqa I., Kosorok M.R., Jin J., Mierzwa M., Ten Haken R.K. Prospects and challenges for clinical decision support in the era of big data. JCO Clin Cancer Inform. 2018; 2: CCI.18.00002. https://doi.org/10.1200/cci.18.00002.

6. Xu J., Yang P., Xue S., et al. Translating cancer genomics into precision medicine with artificial intelligence: applications, challenges and future perspectives. Hum Genet. 2019; 138 (2): 109–24. https://doi.org/10.1007/s00439-019-01970-5.

7. Kermany D.S., Goldbaum M., Cai W., et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell. 2018; 172 (5): 1122–31e.9. https://doi.org/10.1016/j.cell.2018.02.010.

8. Esteva A., Kuprel B., Novoa R., et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017; 542 (7639): 115–8. https://doi.org/10.1038/nature21056.

9. Poplin R., Varadarajan A.V., Blumer K., et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018; 2: 158–64. https://doi.org/10.1038/s41551-018-0195-0.

10. Kantarjian H., Yu P.P. Artificial intelligence, big data, and cancer. JAMA Oncology. 2015; 1 (5): 573. https://doi.org/10.1001/jamaoncol.2015.1203.

11. Shimizu H., Nakayama K.I. Artificial intelligence in oncology. Cancer Sci. 2020; 111 (5): 1452–60. https://doi.org/10.1111/cas.14377.

12. Ehteshami Bejnordi B., Veta M., Johannes van Diest P., et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA. 2017; 318: 2199–2210. https://doi.org/10.1001/jama.2017.14585.

13. Ainscough B.J., Barnell E.K., Ronning P., et al. A deep learning approach to automate refinement of somatic variant calling from cancer sequencing data. Nat Genet. 2018; 50 (12): 1735–43. https://doi.org/10.1038/s41588-018-0257-y.

14. Chang P., Grinband J., Weinberg B.D., et al. Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. AJNR Am J Neuroradiol. 2018; 39 (7): 1201–7. https://doi.org/10.3174/ajnr.A5667.

15. Liang G., Fan W., Luo H., et al. The emerging roles of artificial intelligence in cancer drug development and precision therapy. Biomed Pharmacother. 2020; 128: 110255. https://doi.org/10.1016/j.biopha.2020.110255.

16. Siegersma K.R., Leiner T., Chew D.P., et al. Artificial intelligence in cardiovascular imaging: state of the art and implications for the imaging cardiologist. Neth Heart J. 2019; 27 (9): 403–13. https://doi.org/10.1007/s12471-019-01311-1.

17. Tai A.M., Albuquerque A., Carmona N.E., et al. Machine learning and big data: implications for disease modeling and therapeutic discovery in psychiatry. Artif Intell Med. 2019; 99: 101704. https://doi.org/10.1016/j.artmed.2019.101704.

18. Brasil S., Pascoal C., Francisco R., et al. Artificial intelligence (AI) in rare diseases: is the future brighter? Genes (Basel). 2019; 10 (12): 978. https://doi.org/10.3390/genes10120978.

19. Kindle R.D., Badawi O., Celi L.A., Sturland S. Intensive care unit telemedicine in the era of big data, artificial intelligence, and computer clinical decision support systems. Critical Care Clinics. 2019; 35 (3): 483–95. https://doi.org/10.1016/j.ccc.2019.02.005.

20. Cosgriff C.V., Celi L.A., Stone D.J. Critical care, critical data. Biomed Eng Comput Biol. 2019; 10: 1179597219856564. https://doi.org/10.1177/1179597219856564.

21. Wang M., Xia C., Huang L., et al. Deep learning-based triage and analysis of lesion burden for COVID-19: a retrospective study with external validation. Lancet Digit Health. 2020; 2 (10): e506–15. https://doi.org/10.1016/S2589-7500(20)30199-0.

22. Vardhanabhuti V. CT scan AI-aided triage for patients with COVID-19 in China. Lancet Digit Health. 2020; 2 (10): e494–5. https://doi.org/10.1016/S2589-7500(20)30222-3.

23. Liang W., Yao J., Chen A., et al. Early triage of critically ill COVID-19 patients using deep learning. Nat Commun. 2020; 11: 3543. https://doi.org/10.1038/s41467-020-17280-8.

24. Fernandes M., Vieira S.M., Leite F., et al. Clinical decision support systems for triage in the emergency department using intelligent systems: a review. Artif Intell Med. 2020; 102: 101762. https://doi.org/10.1016/j.artmed.2019.101762.

25. Kim H.S., Kim D.J., Yoon K.H. Medical big data is not yet available: why we need realism rather than exaggeration. Endocrinol Metab (Seoul). 2019; 34 (4): 349–54. https://doi.org/10.3803/EnM.2019.34.4.349.

26. Manrique de Lara A., Peláez-Ballestas I. Big data and data processing in rheumatology: bioethical perspectives. Clin Rheumatol. 2020; 39: 1007–14. https://doi.org/10.1007/s10067-020-04969-w.

27. Sloane E.B., Silva J.R. Artificial intelligence in medical devices and clinical decision support systems. In: Clinical engineering handbook. 2nd ed. Elsevier; 2020: 556–68. https://doi.org/10.1016/B978-0-12-813467-2.00084-5.


Review

For citations:


Erivantseva T.N., Blokhina Yu.V. Artificial intelligence in healthcare: possibilities of patent protection. FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2021;14(2):270–276. (In Russ.) https://doi.org/10.17749/2070-4909/farmakoekonomika.2021.063

Views: 1081


ISSN 2070-4909 (Print)
ISSN 2070-4933 (Online)