Preview

FARMAKOEKONOMIKA. Modern Pharmacoeconomic and Pharmacoepidemiology

Advanced search

Modeling microbial drug-resistance: from mathematics to pharmacoeconomics

https://doi.org/10.17749/2070-4909.2018.11.1.027-036

Full Text:

Abstract

Complicated intra-abdominal infection (IAI) requires increased health care expenditures and additional resources to compensate for an ineffective starting therapy.

Aim. To select the economically optimal algorithm for using antimicrobial agents (AMA) that would minimize the evolving drug-resistance of microbial flora exemplified by E. coli.

Methods. Based on the published data and our own clinical experience with antimicrobial drugs,  we calculated the cost of treatment of complicated IAI when either effective or ineffective  starting antibiotic therapy was applied. The developing drug-resistance of E. coli was simulated  by a mathematical model that incorporated real data on the antimicrobial drugs usage. The  model was also able to propose the optimal mode of AMA consumption, which is expected to minimize the microbial drugresistance.

Results. According to the model, the current volume of AMA consumption (which includes more than 60% of fluoroquinolones, 3d generation cephalosporins and inhibitor-protected penicillin  derivatives) will increase the proportion of the Extended-spectrum betalactamase (ESBL)-positive strains of E. coli by 7% over the next 5 years. In contrast, the proposed alternative (optimized)  mode of AMA consumption (almost complete withdrawal of inhibitor-protected penicillins and  fluoroquinolones, against an increase in carbapenems by 30% and an increase in 3d generation  cephalosporins by 20%), will decrease the proportion of ESBL (+) E. coli strains by 7%. The cost  of care of complicated IAI under the current AMA regimen will grow due to the increase in the  proportion of ESBL (+) strains of E. coli. In contrast, the alternative (optimal) AMA therapy leading to the decrease in E. coli drug-resistance is expected to reduce the cost of care of complicated IAI to the level where the real and alternative (optimized) AMA consumption expenditures are comparable.

Conclusion. The proposed mathematical model allows one to predict the changes in microbial  drug-resistance and choose the optimal algorithm of AMA consumption able to restrain the growth of drug-resistance.

About the Authors

Yu. M. Gomon
Pavlov First Sankt-Peterburg State Medical University, Health Ministry of Russian Federation St. Petersburg State Budget Institute of Healthcare “St. George the Martyr City Hospital”
Russian Federation

6-8 L'va Tolstogo Str., Sankt-Peterburg 197022, Russia

1 Severnyi prospekt, Sankt-Peterburg 194354, Russia

MD, PhD, Assistant Professor, Department of clinical pharmacology and evidence-based medicine, The First Pavlov State Medical University, St. Petersburg; Clinical pharmacologist, St. George City Hospital, St. Petersburg



M. A. Arepyeva
Sankt-Peterburg State University
Russian Federation

7-9 Universitetskaya Emb., Sankt-Peterburg 199034, Russia

PhD student, Department of mathematic modeling of energy systems, St. Petersburg State University, St. Petersburg



Yu. E. Balykina
Sankt-Peterburg State University
Russian Federation

7-9 Universitetskaya Emb., Sankt-Peterburg 199034, Russia

PhD, Senior lecturer, Department of mathematic modeling of energy systems, Saint- Petersburg State University, Saint-Petersburg. Tel.: +79117378634

 



A. S. Kolbin
Pavlov First Sankt-Peterburg State Medical University, Health Ministry of Russian Federation Sankt-Peterburg State University
Russian Federation

6-8 L'va Tolstogo Str., Sankt-Peterburg 197022, Russia

7-9 Universitetskaya Emb., Sankt-Peterburg 199034, Russia

MD, Professor, Head of the Department of clinical pharmacology and evidence-based medicine, First Pavlov State Medical University; Professor, Department of Pharmacology, Saint-Petersburg State University. Tel.: +7(812)3386685



A. A. Kurylev
Pavlov First Sankt-Peterburg State Medical University, Health Ministry of Russian Federation
Russian Federation

6-8 L'va Tolstogo Str., Sankt-Peterburg 197022, Russia

Assistant at the Department of clinical pharmacology and evidence-based medicine, First Pavlov State Medical University



M. A. Proskurin
Sankt-Peterburg State University
Russian Federation

7-9 Universitetskaya Emb., Sankt-Peterburg 199034, Russia

Researcher, Saint-Petersburg State University. Tel.: +79119003340



S. V. Sidorenko
Federal State Budget Institution “Childhood Scientific and Clinical Center of Infectious Disease of Federal Medical and Biological Agency” “North-West State Medical University” of the Ministry of Health of the Russian Federation
Russian Federation

9 Professora Popova ul., Sankt-Peterburg 197022, Russia

41 Kirochnaya Str., Sankt-Peterburg 191015, Russia

MD, Professor, Head of the Department of molecular microbiology and epidemiology, Research Institute of Children’s Infections, Federal Medico-Biological Agency. Tel.: +7(812)2349691 



References

1. Goldmann D. A., Weinstein R. A., Wenzel R. P., et al. Strategies to prevent and control the emergence and spread of antimicrobialresistant microorganisms in hospitals. A challenge to hospital leadership. JAMA. 1996; 275: 234-40.

2. Van Boeckel T. P. et al. Global antibiotic consumption 2000 to 2010: an analysis national pharmaceuticals sales data. Lancet Infect Dis. 2014; 14: 742-50.

3. Babini G. S., Livermore D. M. Antimicrobial resistance amongst Klebsiella spp. collected from intensive care units in Southern and Western Europe in 1997-1998. J Antimicrob Chemother. 2000; 45: 183-9.

4. Paterson D. L., Ko W. C., Von Gottberg A., et al. Outcome of cephalosporin treatment for serious infections due to apparently susceptible organisms producing extended-spectrum beta-lactamases: implications for the clinical microbiology laboratory. J Clin Microbiol. 2001; 39: 2206-12.

5. On-lain platforma analiza dannykh rezistentnosti k antimikrobnym preparatam v Rossii. URL: https://www.map.antibiotic.ru. Accessed: 25.12.2017.

6. Kozlov R. S., Golub A. V. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya (in Russian). 2011; 13 (4): 322-34.

7. Dinubile M. J., Friedland I., Chan C. Y. et al. Bowel colonization with resistant gram-negative bacilli after antimicrobial therapy of intraabdominal infections: observations from two randomized comparative clinical trials of ertapenem therapy. Eur J Clin Microbiol Infect Dis. 2005; 24: 443-9.

8. Laxminarayan R., Brown G. M. Economics of antibiotic resistance: a theory of optimal use. J Environ Econ Manage. 2001; 42: 183-206.

9. Walters D. J., Solomkin J. S., Paladino JA. Cost effectiveness of ciprofloxacin plus metronidazole versus imipenem-cilastatin in the treatment of intraabdominal infections. Pharmacoeconomics. 1999; 16: 551-61.

10. Sturkenboom M. C., Goettsch W. G., Picelli G., et al. Inappropriate initial treatment of secondary intraabdominal infections leads to increased risk of clinical failure and costs. Br J Clin Pharmacol. 2005; 60: 438-43.

11. Bohnen J. M. A., Solomkin J. S., Dellinger EP, et al. Guidelines for clinical care: anti-infective agents for intraabdominal infection. A Surgical Infection Society policy statement. Arch Surg. 1992; 127: 83-9.

12. Solomkin J. S., Mazuski J. E., Baron E. J., et al. Guidelines for the selection of anti-infective agents for complicated intra-abdominal infections. Clin Infect Dis. 2003; 37: 997-1005.

13. Sartelli M. et al. Management of intra-abdominal infections: recommendations by the WSES 2016 consensus conference. World Journal of Emergency Surgery. Available at: https://wjes.biomedcentral.com/articles/10.1186/s13017-017-0132-7. Accessed: 25.12.2017.

14. Cardoso T., Almeida M., Friedman N. D., et al. Classification of healthcare- associated infection: a systematic review 10 years after the first proposal. BMC Med. 2014; 12: 40

15. Basic concepts in the evaluation of medical technologies. Method. allowance. Under. Ed. A. S. Kolbin, SK Zyryanov, D. Yu. Belousov [Osnovnye ponyatiya v otsenke meditsinskikh tekhnologii. Metod. posobie. Pod. red. A. S. Kolbina, S. K. Zyryanova, D. Yu. Belousova (in Russian)]. Moscow. 2013; 42 s.

16. Sidorenko S. V., Kolbin A. S., Shlyapnikov S. A. Antibiotiki i khimioterapiya (in Russian). 2017; 62: 17-22.

17. Guilbart M. et al. Compliance with an empirical antimicrobial protocol improves the outcome of complicated intra-abdominal infections: a prospective observational study. Br J Anaesth. 2016; 117 (1): 66-72.

18. Commission for the development of the Territorial Program of CHI in St. Petersburg. General Tariff Agreement (in Russian). URL: https://spboms.ru/page/docs. Accessed: 25.12.2017.

19. The price list of paid medical services of SPb GBU “Institute of Emergency care named after I. I. Janelidze» (in Russian). URL: http://www.emergency.spb.ru/services/paid/328-price. Accessed: 25.12.2017.

20. Arepyeva M., Kolbin A., Sidorenko S. et al. A mathematical model for predicting the development of bacterial resistance based on the relationship between the level of antimicrobial resistance and the volume of antibiotic consumption. Journal of Global Antimicrobial Resistance. 2017; 8: 148-156.

21. Arep’eva M. A., Kolbin A. S., Sidorenko S. V. Klinicheskaya mikrobiologiya antimikrobnaya khimioterapiya (in Russian). 2016; 18 (3): 200-211.

22. The who global strategy for containment of antimicrobial resistance. URL: http://www.who.int/drugresistance/WHO_Global_Strategy_Russian.pdf. Accessed: 25.12.2017.

23. Gomon Yu. M., Balykina Yu. E., Kolbin A. S. Research report. 2017.

24. Daneman N., Hong Lu, Redelmeier D. Fluoroquinolones and collagen associated severe adverse events: a longitudinal cohort study. BMJ Open. 2015; 5:e010077: 1-9. DOI: 10.1136/bmjopen-2015-010077.

25. Arcieri G. M., Becker N., Esposito B. et al. Safety of intravenous ciprofloxacin. A review. Am J Med. 1989; 87 (5A): 92-97.

26. Etminan M., Forooghian F., Brophy J. M., et al. Oral fluoroquinolones and the risk of retinal detachment. JAMA. 2012; 307 (13): 1414-9.


For citation:


Gomon Y.M., Arepyeva M.A., Balykina Y.E., Kolbin A.S., Kurylev A.A., Proskurin M.A., Sidorenko S.V. Modeling microbial drug-resistance: from mathematics to pharmacoeconomics. FARMAKOEKONOMIKA. Modern Pharmacoeconomic and Pharmacoepidemiology. 2018;11(1):27-36. (In Russ.) https://doi.org/10.17749/2070-4909.2018.11.1.027-036

Views: 211


ISSN 2070-4909 (Print)
ISSN 2070-4933 (Online)