Диетические факторы, влияющие на эпидемический процесс COVID-19
https://doi.org/10.17749/2070-4909/farmakoekonomika.2022.135
Аннотация
Цель: проанализировать роль рациона питания в эпидемиологических параметрах коронавируса SARS-CoV-2 и выявить факторы, коррелирующие со снижением тяжести последствий заболевания COVID-19, а именно частотой заболеваемости (англ. rate of prevalence, RPr) и смертности (англ. infection fatality rate, IFR) в разных регионах.
Материал и методы. Информация и данные, необходимые для этой работы, были найдены в научных публикациях и средствах массовой информации, доступных в Интернете, а также получены из баз статистических данных с использованием определенных ключевых слов для одного тега или в различных их комбинациях. Статистические выборки были сформированы из источников и фактов, доступных в Интернете. Корреляция для двух переменных определялась как коэффициент Пирсона.
Результаты. Взаимосвязь между факторами питания и влиянием 15-месячной пандемии COVID-19 в разных регионах была исследована с использованием различных доступных статистических данных по пяти континентам и 47 странам. Обнаружена четкая связь между исходами эпидемии SARS-CoV-2 (RPr и IFR) и количеством потребленных основных нутриентов с корреляциями в отрицательном диапазоне r=–0,98 и r=–0,66 для растительных белков и коэффициентом корреляции r=0,92 для белков животного происхождения. Также чрезмерное потребление сахара увеличивало тяжесть течения COVID-19 с коэффициентами корреляции в диапазоне r=0,99–0,72 в репрезентативных выборках.
Заключение. Статистический анализ показал, что количество диагностированных пациентов с SARS-CoV-2 (RPr) и смертей от COVID-19 (IFR) было значительно ниже в регионах, где потреблялось больше растительной пищи, чем продуктов животного происхождения. Детальное изучение взаимосвязи между коронавирусом и хозяином, а также метаболизма белков и сахаров поможет выявить факторы питания, ответственные за устойчивость к патогену. Съедобные растения могут содержать компоненты, ответственные за подавление цикла репликации вируса SARS-CoV-2. Биохимические исследования этих компонентов помогут в разработке этиологических пероральных препаратов против COVID-19.
Об авторе
С. В. ПономаренкоГермания
Пономаренко София Васильевна – к.б.н., менеджер проектов компании
Сименсштрассе, д. 42, Бёнен 59199
Список литературы
1. WHO Director-General's opening remarks at the media briefing on COVID-19 – 11 March 2020. Available at: https://www.who.int/directorgeneral/speeches/detail/who-director-general-s-opening-remarks-atthe-media-briefing-on-covid-19---11-march-2020 (accessed 20.07.2022).
2. Hu B., Guo H., Zhou P., et al. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021; 19 (3): 141–54. https://doi.org/10.1038/s41579-020-00459-7.
3. To K.K., Sridhar S., Chiu K.H., et al. Lessons learned 1 year after SARS-CoV-2 emergence leading to COVID-19 pandemic. Emerg Microbes Infect. 2021; 10 (1): 507–35. https://doi.org/10.1080/22221751.2021.1898291.
4. V’kovski P., Kratzel A., Steiner S., et al. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021; 19 (3): 155–70. https://doi.org/10.1038/s41579-020-00468-6.
5. Coronavirus disease (COVID-19) pandemic. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed 20.07.2022).
6. Worldometer. Coronavirus Updates. Available at: https://www.worldometers.info (accessed 20.07.2022).
7. Centers for Disease Control Prevention. COVID-19. Understanding risk. Available at: https://www.cdc.gov/coronavirus/2019-ncov/coviddata/investigations-discovery/assessing-risk-factors.html (accessed 20.08.2022).
8. Geng M.J., Wang L.P., Ren X., et al. Risk factors for developing severe COVID-19 in China: an analysis of disease surveillance data. Infect Dis Poverty. 2021; 10 (1): 48. https://doi.org/10.1186/s40249-021-00820-9.
9. Booth A., Reed A.B., Ponzo S., et al. Population risk factors for severe disease and mortality in COVID19: a global systematic review and metaanalysis. PLoS One. 2021; 16 (3): e0247461. https://doi.org/10.1371/journal.pone.0247461.
10. Jin J., Agarwala N., Kundu P., et al. Individual and community-level risk for COVID-19 mortality in the United States. Nat Med. 2021; 27 (2): 264–9. https://doi.org/10.1038/s41591-020-01191-8.
11. Mathur R., Rentsch C.T., Morton C.E., et al. Ethnic differences in SARS-CoV-2 infection and COVID-19-related hospitalisation, intensive care unit admission, and death in 17 million adults in England: an observational cohort study using the OpenSAFELY platform. Lancet. 2021; 397 (10286): 1711–24. https://doi.org/10.1016/S0140-6736(21)00634-6.
12. Roy S., Ghosh P. Factors affecting COVID-19 infected and death rates inform lockdown-related policymaking. PLoS One. 2020; 15 (10): e0241165. https://doi.org/10.1371/journal.pone.0241165.
13. Tan A.X., Hinman J.A., Abdel Magid H.S., et al. Association between income inequality and county-level COVID-19 cases and deaths in the US. JAMA Netw Open. 2021; 4 (5): e218799. https://doi.org/10.1001/jamanetworkopen.2021.8799.
14. Van Damme W., Dahake R., Delamou A., et al. The COVID-19 pandemic: diverse contexts; different epidemics-how and why? BMJ Glob Health. 2020; 5 (7): e003098. https://doi.org/10.1136/bmjgh-2020-003098.
15. Wamai R.G., Hirsch J.L., Van Damme W., et al. What could explain the lower COVID-19 burden in Africa despite considerable circulation of the SARS-CoV-2 virus? Int J Environ Res Public Health. 2021; 18 (16): 8638. https://doi.org/10.3390/ijerph18168638.
16. Williamson E.J., Walker A.J., Bhaskaran K., et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020; 584 (7821): 430–6. https://doi.org/10.1038/s41586-020-2521-4.
17. Zhang W., Zhang C., Bi Y., et al. Analysis of COVID-19 epidemic and clinical risk factors of patients under epidemiological Markov model. Results Phys. 2021; 22: 103881. https://doi.org/10.1016/j.rinp.2021.103881.
18. Abdelrahman Z., Li M., Wang X. Comparative Review of SARS‑CoV-2, SARS-CoV, MERS-CoV, and Influenza A respiratory viruses. Front Immunol. 2020; 11: 552909. https://doi.org/10.3389/fimmu.2020.552909.
19. Hoffmann M., Kleine-Weber H., Schroeder S., et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181 (2): 271–80.e8. https://doi.org/10.1016/j.cell.2020.02.052.
20. Wu S.C., Arthur C.M., Wang J., et al. The SARS-CoV-2 receptorbinding domain preferentially recognizes blood group A. Blood Adv. 2021; 5 (5): 1305–9. https://doi.org/10.1182/bloodadvances.2020003259.
21. Mokhtari T., Hassani F., Ghaffari N., et al. COVID-19 and multiorgan failure: a narrative review on potential mechanisms. J Mol Histol. 2020; 51 (6): 613–28. https://doi.org/10.1007/s10735-020-09915-3.
22. Kordzadeh-Kermani E., Khalili H., Karimzadeh I. Pathogenesis, clinical manifestations and complications of coronavirus disease 2019 (COVID-19). Future Microbiol. 2020; 15: 1287–305. https://doi.org/10.2217/fmb-2020-0110.
23. Al-Aly Z., Xie Y., Bowe B. High-dimensional characterization of postacute sequelae of COVID-19. Nature. 2021; 594 (7862): 259–64. https://doi.org/10.1038/s41586-021-03553-9.
24. Sudre C.H., Murray B., Varsavsky T., et al. Attributes and predictors of long COVID. Nat Med. 2021; 27 (4): 626–31. https://doi.org/10.1038/s41591-021-01292-y.
25. Karlinsky A., Kobak D. Tracking excess mortality across countries during the COVID-19 pandemic with the World Mortality Dataset. Elife. 2021; 10: e69336. https://doi.org/10.7554/eLife.69336.
26. Fan J., Han F., Liu H. Challenges of Big Data analysis. Natl Sci Rev. 2014; 1 (2): 293–314. https://doi.org/10.1093/nsr/nwt032.
27. Kontis V., Bennett J.E., Rashid T., et al. Magnitude, demographics and dynamics of the effect of the first wave of the COVID-19 pandemic on all-cause mortality in 21 industrialized countries. Nat Med. 2020; 26 (12): 1919–28. https://doi.org/10.1038/s41591-020-1112-0.
28. Ponomarenko S. Economic and social factors affecting the epidemiological process of the SARS-CoV-2 coronavirus. Available at: https://doi.org/10.21055/preprints-3111965 (accessed 20.08.2022).
29. Hashim M.J., Alsuwaidi A.R., Khan G. Population risk factors for COVID-19 mortality in 93 countries. J Epidemiol Glob Health. 2020; 10 (3): 204–8. https://doi.org/10.2991/jegh.k.200721.001.
30. World Bank Open Data. Available at: https://data.worldbank.org/ (accessed 20.07.2022).
31. Our World in Data. Research and data to make progress against the world’s largest problems. Available at: https://ourworldindata.org (accessed 20.07.2022).
32. World per Capita Consumption of Sugar, 2012 to 2018. Available at: https://www.indiansugar.com/PDFS/World_per_Capita_Consumption_of_Sugar.pdf (accessed 20.08.2022).
33. WHO sugar recommendations. Available at: https://www.ages.at/en/human/nutrition-food/nutrition-recommendations/who-sugarrecommendations (accessed 20.08.2022).
34. Ali A.M., Kunugi H. Approaches to nutritional screening in patients with coronavirus disease 2019 (COVID-19). Int J Environ Res Public Health. 2021; 18 (5): 2772. https://doi.org/10.3390/ijerph18052772.
35. Allard L., Ouedraogo E., Molleville J., et al. Malnutrition: percentage and association with prognosis in patients hospitalized for coronavirus disease 2019. Nutrients. 2020; 12 (12): 3679. https://doi.org/10.3390/nu12123679.
36. Akhtar S., Das J.K., Ismail T., et al. Nutritional perspectives for the prevention and mitigation of COVID-19. Nutr Rev. 2021; 79 (3): 289– 300. https://doi.org/10.1093/nutrit/nuaa063.
37. Mentella M.C., Scaldaferri F., Gasbarrini A., Miggiano G.A.D. The role of nutrition in the COVID-19 pandemic. Nutrients. 2021; 13 (4): 1093. https://doi.org/10.3390/nu13041093.
38. Morais A., Aquino J.S., da Silva-Maia J.K., et al. Nutritional status, diet and viral respiratory infections: perspectives for severe acute respiratory syndrome coronavirus 2. Br J Nutr. 2021; 125 (8): 851–62. https://doi.org/10.1017/S0007114520003311.
39. Sahin E., Orhan C., Uckun F.M., Sahin K. Clinical impact potential of supplemental nutrients as adjuncts of therapy in high-risk COVID-19 for obese patients. Front Nutr. 2020; 7: 580504. https://doi.org/10.3389/fnut.2020.580504.
40. Clemente-Suárez V.J., Ramos-Campo D.J., Mielgo-Ayuso J., et al. Nutrition in the actual COVID-19 pandemic. A narrative review. Nutrients. 2021; 13 (6): 1924. https://doi.org/10.3390/nu13061924.
41. James P.T., Ali Z., Armitage A.E., et al. The role of nutrition in COVID-19 susceptibility and severity of disease: a systematic review. J Nutr. 2021; 151 (7): 1854–78. https://doi.org/10.1093/jn/nxab059.
42. Mortaz E., Bezemer G., Alipoor S.D., et al. Nutritional impact and its potential consequences on COVID-19 severity. Front Nutr. 2021; 8: 698617. https://doi.org/10.3389/fnut.2021.698617.
43. Protein and amino acid requirements in human nutrition. World Health Organ Tech Rep Ser. 2007; 935: 1–265.
44. Rothenberg E. Coronavirus disease 19 from the perspective of ageing with focus on nutritional status and nutrition management – a narrative review. Nutrients. 2021; 13 (4): 1294. https://doi.org/10.3390/nu13041294.
45. Food and Agriculture Organization of the United Nations. Eating healthy before, during and after COVID-19. Available at: http://www.fao.org/fao-stories/article/en/c/1392499/ (accessed 20.07.2022).
46. Greene M.W., Roberts A.P., Frugé A.D. Negative association between Mediterranean diet adherence and COVID-19 cases and related deaths in Spain and 23 OECD countries: an ecological study. Front Nutr. 2021; 8: 591964. https://doi.org/10.3389/fnut.2021.591964.
47. Kim H., Rebholz C.M., Hegde S., et al. Plant-based diets, pescatarian diets and COVID-19 severity: a population-based case-control study in six countries. BMJ Nutr Prev Health. 2021; June 7. https://doi.org/10.1136/bmjnph-2021-000272.
48. Food and Agriculture Organization of the United Nations. Food Balances (2010-). Available at: https://FAO.org/faostat/en/#data/FBS (accessed 20.07.2022).
49. Barberis E., Amede E., Tavecchia M., et al. Understanding protection from SARS-CoV-2 using metabolomics. Sci Rep. 2021; 11 (1): 13796. https://doi.org/10.1038/s41598-021-93260-2.
50. Schüler R., Osterhof M.A., Frahnow T., et al. High-saturated-fat diet increases circulating angiotensin-converting enzyme, which is enhanced by the rs4343 polymorphism defining persons at risk of nutrient-dependent increases of blood pressure. J Am Heart Assoc. 2017; 6 (1): e004465. https://doi.org/10.1161/JAHA.116.004465.
51. Bousquet J., Anto J.M., Iaccarino G., et al. Is diet partly responsible for differences in COVID-19 death rates between and within countries? Clin Transl Allergy. 2020; 10: 16. https://doi.org/10.1186/s13601-020-00323-0.
52. Paoli A., Gorini S., Caprio M. The dark side of the spoon – glucose, ketones and COVID-19: a possible role for ketogenic diet? J Transl Med. 2020; 18 (1): 441. https://doi.org/10.1186/s12967-020-02600-9.
53. Csapó J., Csilla A. Methods and procedures for reducing soy trypsin inhibitor activity by means of heat treatment combined with chemical methods. Acta Universitatis Sapientiae, Alimentaria. 2018; 11 (1): 58– 80. https://doi.org/10.2478/ausal-2018-0004.
54. Losso J.N. The biochemical and functional food properties of the bowman-birk inhibitor. Crit Rev Food Sci Nutr. 2008; 48 (1): 94–118. https://doi.org/10.1080/10408390601177589.
55. Srikanth S., Chen Z. Plant protease inhibitors in therapeutics-focus on cancer therapy. Front Pharmacol. 2016; 7; 470. https://doi.org/10.3389/fphar.2016.00470.
56. Billinger E., Zuo S., Johansson G. Characterization of serine protease inhibitor from Solanum tuberosum conjugated to soluble dextran and particle carriers. ACS Omega. 2019; 4 (19): 18456–64. https://doi.org/10.1021/acsomega.9b02815.
57. Komarnytsky S., Cook A., Raskin I. Potato protease inhibitors inhibit food intake and increase circulating cholecystokinin levels by a trypsindependent mechanism. Int J Obes (Lond). 2011; 35 (2): 236–43. https://doi.org/10.1038/ijo.2010.192.
58. Ali S.G., Ansari M.A., Alzohairy M.A., et al. Natural products and nutrients against different viral diseases: prospects in prevention and treatment of SARS-CoV-2. Medicina (Kaunas). 2021; 57 (2): 169. https://doi.org/10.3390/medicina57020169.
59. Fuzimoto A.D., Isidoro C. The antiviral and coronavirus-host protein pathways inhibiting properties of herbs and natural compounds – additional weapons in the fight against the COVID-19 pandemic? J Tradit Complement Med. 2020; 10 (4): 405–19. https://doi.org/10.1016/j.jtcme.2020.05.003.
60. Li Z., Li X., Huang Y.Y., et al. Identify potent SARS-CoV-2 main protease inhibitors via accelerated free energy perturbation-based virtual screening of existing drugs. Proc Natl Acad Sci. 2020; 3; 117 (44): 27381–7. https://doi.org/10.1073/pnas.2010470117.
61. Chitsike L., Duerksen-Hughes P. Keep out! SARS-CoV-2 entry inhibitors: their role and utility as COVID-19 therapeutics. Virol J. 2021; 18 (1): 154. https://doi.org/10.1186/s12985-021-01624-x.
62. Guedes I.A., Costa L.S.C., dos Santos K.B., et al. Drug design and repurposing with DockThor-VS web server focusing on SARS-CoV-2 therapeutic targets and their non-synonym variants. Sci Rep. 2021; 11 (1): 5543. https://doi.org/10.1038/s41598-021-84700-0.
63. Riva L., Yuan S., Yin X., et al. Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature. 2020; 586 (7827): 113–9. https://doi.org/10.1038/s41586-020-2577-1.
Рецензия
Для цитирования:
Пономаренко С.В. Диетические факторы, влияющие на эпидемический процесс COVID-19. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2022;15(4):463-471. https://doi.org/10.17749/2070-4909/farmakoekonomika.2022.135
For citation:
Ponomarenko S.V. Dietary factors influencing the COVID-19 epidemic process. FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2022;15(4):463-471. https://doi.org/10.17749/2070-4909/farmakoekonomika.2022.135

Контент доступен под лицензией Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.