Preview

FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology

Advanced search

Epigenetic aspects in rehabilitation of female cancer patients

https://doi.org/10.17749/2070-4909/farmakoekonomika.2022.141

Abstract

The influence of epigenetic processes on the development of malignant diseases, including gynaecological cancers, is now beyond doubt. DNA methylation, histone modification and post-transcriptional regulation by microRNAs lead to changes in the activity of various genes, contributing to female genital cancers (cervix, endometrium, ovarian). It should be noted that disruptions in gene expression do not only occur in malignant cells, but also in the tumour microenvironment, resulting in disease progression and relapse. However, “epigenetic markers” of carcinogenesis can be useful in the treatment and rehabilitation of patients, making a personalized approach possible.

About the Authors

A. G. Solopova
Sechenov University
Russian Federation

Antonina G. Solopova – Dr. Med. Sc., Professor, Chair of Obstetrics and Gynecology, Filatov Clinical Institute of Children's Health. Scopus Author ID: 6505479504; WoS ResearcherID: Q-1385-2015; RSCI SPIN-code: 5278-0465

8/2 Trubetskaya Str., Moscow 119991



D. V. Blinov
Institute for Preventive and Social Medicine; Lapino Clinical Hospital, Medical Group “Mother and Child”; Moscow Haass Medical Social Institute
Russian Federation

Dmitry V. Blinov – MD, PhD, MBA, Head of Medical and Scientific Affairs; Neurologist; Faculty Member, Chair of Neurology, Psychiatry and Narcology. WoS ResearcherID: J-4946-2017; Scopus Author ID: 7003589812; RSCI SPIN-code: 6317-9833

4/10 Sadovaya-Triumfalnaya Str., Moscow 127006
111 1st Uspenskoye Hwy, Moscow Region, Odintsovo District, Lapino 143081
5 bldg 1-1a 2nd Brestskaya Str., Moscow 123056



S. V. Demyanov
Sechenov University
Russian Federation

Semen V. Demyanov – 5th Year Student

8/2 Trubetskaya Str., Moscow 119991



G. V. Demyanov
Sechenov University
Russian Federation

Gleb V. Demyanov – 5th Year Student

8/2 Trubetskaya Str., Moscow 119991



E. E. Achkasov
Sechenov University
Russian Federation

Evgeniy E. Achkasov – Dr. Med. Sc., Professor, Head of Department of Sports Medicine and Rehabilitation. RSCI SPIN-code: 5291-0906

8/2 Trubetskaya Str., Moscow 119991



A. Yu. Vlasina
Sechenov University
Russian Federation

Anastasia Yu. Vlasina – Postgraduate, Chair of Obstetrics and Gynecology, Filatov Clinical Institute of Children's Health. WoS ResearcherID: AAF-3130-2020; Scopus Author ID: 1016902; RSCI SPIN-code: 1496-6522

8/2 Trubetskaya Str., Moscow 119991



L. N. Sandzhieva
Sechenov University
Russian Federation

Lidiya N. Sandzhieva – Postgraduate, Chair of Obstetrics and Gynecology, Filatov Clinical Institute of Children's Health. RSCI SPIN-code: 7228-3726

8/2 Trubetskaya Str., Moscow 119991



D. M. Ampilogova
Sechenov University
Russian Federation

Diana M. Ampilogova – MD, Clinical Resident, Chair of Obstetrics and Gynecology, Sklifosovsky Institute of Clinical Medicine

8/2 Trubetskaya Str., Moscow 119991



References

1. Stout N.L., Santa Mina D., Lyons K.D., et al. A systematic review of rehabilitation and exercise recommendations in oncology guidelines. CA Cancer J Clin. 2021; 71 (2): 149–75. https://doi.org/10.3322/caac.21639.

2. Kline R.M., Arora N.K., Bradley C.J., et al. Long-term survivorship care after cancer treatment – summary of a 2017 National Cancer Policy Forum Workshop. J Natl Cancer Inst. 2018; 110 (12): 1300–10. https://doi.org/10.1093/jnci/djy176.

3. Sandzhieva L.N., Solopova A.G., Blinov D.V., et al. Personalized comprehensive rehabilitation program after surgical treatment of endometrial cancer: results of a prospective randomized comparative study. Obstetrics, Gynecology and Reproduction. 2021; 16 (2): 143–57 (in Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.318.

4. Shields R.K. Precision rehabilitation: how lifelong healthy behaviors modulate biology, determine health, and affect populations. Phys Ther. 2022; 102 (1): pzab248. https://doi.org/10.1093/ptj/pzab248.

5. Magnusson D.M., Rethorn Z.D. Strengthening population health perspectives in physical therapist practice using epigenetics. Phys Ther. 2022; 102 (1): pzab244. https://doi.org/10.1093/ptj/pzab244.

6. Kumar R., Paul A.M., Rameshwar P., Pillai M.R. Epigenetic dysregulation at the crossroad of women's cancer. Cancers (Basel). 2019; 11 (8): 1193. https://doi.org/10.3390/cancers11081193.

7. Gloss B.S., Samimi G. Epigenetic biomarkers in epithelial ovarian cancer. Cancer Lett. 2014; 342 (2): 257–63. https://doi.org/10.1016/j.canlet.2011.12.036.

8. Matei D., Nephew K.P. Epigenetic attire in ovarian cancer: the emperor's new clothes. Cancer Res. 2020; 80 (18): 3775–85. https://doi.org/10.1158/0008-5472.CAN-19-3837.

9. Natanzon Y., Goode E.L., Cunningham J.M. Epigenetics in ovarian cancer. Semin Cancer Biol. 2018; 51: 160–9. https://doi.org/10.1016/j.semcancer.2017.08.003.

10. Kumar R., Deivendran S., Santhoshkumar T.R., Pillai M.R. Signaling coupled epigenomic regulation of gene expression. Oncogene. 2017; 36 (43): 5917–26. https://doi.org/10.1038/onc.2017.201.

11. Asadollahi R., Hyde C.A., Zhong X.Y. Epigenetics of ovarian cancer: from the lab to the clinic. Gynecol Oncol. 2010; 118 (1): 81–7. https://doi.org/10.1016/j.ygyno.2010.03.015.

12. Torre L.A., Trabert B., DeSantis C.E., et al. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018; 68 (4): 284–96. https://doi.org/10.3322/caac.21456.

13. Yang Q., Yang Y., Zhou N., et al. Epigenetics in ovarian cancer: premise, properties, and perspectives. Mol Cancer. 2018; 17 (1): 109. https://doi.org/10.1186/s12943-018-0855-4.

14. Gomez S., Tabernacki T., Kobyra J., et al. Combining epigenetic and immune therapy to overcome cancer resistance. Semin Cancer Biol. 2020; 65: 99–113. https://doi.org/10.1016/j.semcancer.2019.12.019.

15. Seeber L.M., van Diest P.J. Epigenetics in ovarian cancer. Methods Mol Biol. 2012; 863: 253–69. https://doi.org/10.1007/978-1-61779-612-8_15.

16. Kroeger P.T. Jr., Drapkin R. Pathogenesis and heterogeneity of ovarian cancer. Curr Opin Obstet Gynecol. 2017; 29 (1): 26–34. https://doi.org/10.1097/GCO.0000000000000340.

17. Kondrashova O., Topp M., Nesic K., et al. Methylation of all BRCA1 copies predicts response to the PARP inhibitor rucaparib in ovarian carcinoma. Nat Commun. 2018; 9 (1): 3970. https://doi.org/10.1038/s41467-018-05564-z.

18. Papp E., Hallberg D., Konecny G.E., et al. Integrated genomic, epigenomic, and expression analyses of ovarian cancer cell lines. Cell Rep. 2018; 25 (9): 2617–33. https://doi.org/10.1016/j.celrep.2018.10.096.

19. Feng L.Y., Huang Y.Z., Zhang W., Li L. LAMA3 DNA methylation and transcriptome changes associated with chemotherapy resistance in ovarian cancer. J Ovarian Res. 2021; 14 (1): 67. https://doi.org/10.1186/s13048-021-00807-y.

20. Alegría-Torres J.A., Baccarelli A., Bollati V. Epigenetics and lifestyle. Epigenomics. 2011; 3 (3): 267–77. https://doi.org/10.2217/epi.11.22.

21. Vesnina A., Prosekov A., Kozlova O., Atuchin V. Genes and eating preferences, their roles in personalized nutrition. Genes (Basel). 2020; 11 (4): 357. https://doi.org/10.3390/genes11040357.

22. Remely M., Lovrecic L., de la Garza A.L., et al. Therapeutic perspectives of epigenetically active nutrients. Br J Pharmacol. 2015; 172 (11): 2756–68. https://doi.org/10.1111/bph.12854.

23. Bush C.L., Blumberg J.B., El-Sohemy A., et al. Toward the definition of personalized nutrition: a proposal by the american nutrition association. J Am Coll Nutr. 2020; 39 (1): 5–15. https://doi.org/10.1080/07315724.2019.1685332.

24. Diószegi J., Llanaj E., Ádány R. Genetic background of taste perception, taste preferences, and its nutritional implications: a systematic review. Front Genet. 2019; 10: 1272. https://doi.org/10.3389/fgene.2019.01272.

25. Solopova A.G., Vlasina A.Yu., Son E.A., et al. Adjuvant therapy of surgical menopause symptoms in rehabilitation of patients with borderline ovarian tumors: a role of “cancer immunotherapy diet”. Obstetrics, Gynecology and Reproduction. 2020; 14 (3): 296–313 (in Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2020.146.

26. Schmitz K.H., Campbell A.M., Stuiver M.M., et al. Exercise is medicine in oncology: engaging clinicians to help patients move through cancer. CA Cancer J Clin. 2019; 69 (6): 468–84. https://doi.org/10.3322/caac.21579.

27. Cormie P., Atkinson M., Bucci L., et al. Clinical Oncology Society of Australia position statement on exercise in cancer care. Med J Aust. 2018; 209 (4): 184–7. https://doi.org/10.5694/mja18.00199.

28. Soci U.P., Melo S.F., Gomes J.L., et al. Exercise training and epigenetic regulation: multilevel modification and regulation of gene expression. Adv Exp Med Biol. 2017; 1000: 281–322. https://doi.org/10.1007/978-981-10-4304-8_16.

29. Ferioli M., Zauli G., Maiorano P., et al. Role of physical exercise in the regulation of epigenetic mechanisms in inflammation, cancer, neurodegenerative diseases, and aging process. J Cell Physiol. 2019; 234 (9): 14852–64. https://doi.org/10.1002/jcp.28304.

30. Sharma D., Ganai J., Khan S.A. Potential role of physical therapy in the field of genetic and cellular rehabilitation: a review of literature. Int J Health Sci Res. 2019; 9 (2): 267–77.

31. Campbell K.L., Winters-Stone K.M., Wiskemann J., et al. Exercise guidelines for cancer survivors: consensus statement from International Multidisciplinary Roundtable. Med Sci Sports Exerc. 2019; 51 (11): 2375–90. https://doi.org/10.1249/MSS.0000000000002116.

32. Blbulyan T.A., Solopova A.G., Ivanov A.E., Kurkina E.I. Effect of postoperative rehabilitation on quality of life in patients with vulvar cancer. Obstetrics, Gynecology and Reproduction. 2020; 14 (4): 415–25 (in Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2020.156.

33. Vlasina A.Yu., Solopova A.G., Son E.A., et al. Psycho-emotional well-being and sexual function of patients with borderline ovarian tumors. Obstetrics, Gynecology and Reproduction. 2020; 14 (5): 551–67 (in Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2020.147.

34. Hardeland R. Melatonin, noncoding RNAs, messenger RNA stability and epigenetics – evidence, hints, gaps and perspectives. Int J Mol Sci. 2014; 15 (10): 18221–52. https://doi.org/10.3390/ijms151018221.

35. Jang J.H., Song E.M., Do Y.H., et al. Acupuncture alleviates chronic pain and comorbid conditions in a mouse model of neuropathic pain: the involvement of DNA methylation in the prefrontal cortex. Pain. 2021; 162 (2): 514–30. https://doi.org/10.1097/j.pain.0000000000002031.

36. Bilbao A., Falfán-Melgoza C., Leixner S., et al. Longitudinal structural and functional brain network alterations in a mouse model of neuropathic pain. Neuroscience. 2018; 387: 104–15. https://doi.org/10.1016/j.neuroscience.2018.04.020.

37. Fine P.G. Long-term consequences of chronic pain: mounting evidence for pain as a neurological disease and parallels with other chronic disease states. Pain Med. 2011; 12 (7): 996–1004. https://doi.org/10.1111/j.1526-4637.2011.01187.x.

38. Yanushevich O.O., Rabinovich S.A. Facial neurology: paroxysmal neuralgia (a contribution by Professor Karlov). Epilepsia i paroksizmalʹnye sostoania / Epilepsy and Paroxysmal Conditions. 2021; 13 (1S): 17–20 (in Russ.). https://doi.org/10.17749/2077-8333/epi.par.con.2021.073.

39. Solopova A.G., Blinov D.V., Begovich E., et al. Neurological disorders after hysterectomy: from pathogenesis to clinical manifestations. Epilepsia i paroksizmalʹnye sostoania / Epilepsy and Paroxysmal Conditions. 2022; 14 (1): 54–64 (in Russ.). https://doi.org/10.17749/2077-8333/epi.par.con.2022.115.

40. Hong H., Jing X.Y., Liu S.B., et al. Epigenetic landscape changes due to acupuncture treatment: from clinical to basic research. Chin J Integr Med. 2020; 26 (8): 633–40. https://doi.org/10.1007/s11655-020-2852-x.

41. Sun J., Li R., Li X., et al. Electroacupuncture therapy for change of pain in classical trigeminal neuralgia. Medicine (Baltimore). 2020; 99(16): e19710. https://doi.org/10.1097/MD.0000000000019710.

42. Snyder-Mackler N., Snyder-Mackler L. Holistic rehabilitation: biological embedding of social adversity and its health implications. Phys Ther. 2022; 102 (1): pzab245. https://doi.org/10.1093/ptj/pzab245.

43. Blinov D.V., Akarachkova E.S., Ampilogova D.M., et al. Depression in postmenopause: interdisciplinary approach in management and perspectives for rehabilitation. Obstetrics, Gynecology and Reproduction. 2021; 15 (6): 738–54 (in Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.280.

44. Rider J.V. Regenerative rehabilitation and genomics: implications for occupational therapy. Open J Occup Ther. 2021; 9 (2): 1–8. https://doi.org/10.15453/2168-6408.1785.

45. Ramos-Lopez O., Milagro F.I., Riezu-Boj J.I., Martinez J.A. Epigenetic signatures underlying inflammation: an interplay of nutrition, physical activity, metabolic diseases, and environmental factors for personalized nutrition. Inflamm Res. 2021; 70 (1): 29–49. https://doi.org/10.1007/s00011-020-01425-y.

46. Vlasina A.V., Idrisova L.E., Solopova A.G., et al. Rehabilitation of oncogynecological patients after antitumor therapy: ways of solution. Obstetrics, Gynecology and Reproduction. 2020; 14 (1): 44–55 (in Russ.). https://doi.org/10.17749/2313-7347.2020.14.1.44-55.


Review

For citations:


Solopova A.G., Blinov D.V., Demyanov S.V., Demyanov G.V., Achkasov E.E., Vlasina A.Yu., Sandzhieva L.N., Ampilogova D.M. Epigenetic aspects in rehabilitation of female cancer patients. FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2022;15(2):294-303. (In Russ.) https://doi.org/10.17749/2070-4909/farmakoekonomika.2022.141

Views: 189


ISSN 2070-4909 (Print)
ISSN 2070-4933 (Online)