Preview

FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology

Advanced search

Peptides contained in the composition of Laennec that contribute to the treatment of hyperferritinemia and iron overload disorders

https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.070

Abstract

Introduction. Hemosiderosis is a pathologic condition that accompanies liver, lung, and other organ diseases. Polypeptide-containing drug Laennec contributes to the elimination of excessive iron deposits in tissues.

Aim. The study was aimed to identify peptides contained in the composition of the drug that take part in the regulation of iron homeostasis and correction of hemosiderosis and hyperferritinemia.

Materials and Methods. The study of the drug composition was conducted with hybrid mass-spectrometry and modern methods of analysis of Big Data based on the topological approach to recognition.

Results. The preparation contains 19 peptides that are potentially important for the regulation of iron homeostasis. These peptides help to treat the disorders of iron metabolism by regulating the levels of the main hormone of iron homeostasis hepcidin by reducing the synthesis of ferritin and by exhibiting anti-inflammatory and immunomodulatory effects.

Conclusion. The identified peptides allowed the authors to describe the molecular mechanisms of the iron overload elimination that are known from experimental and clinical studies of the analyzed polypeptide drug.

About the Authors

O. A. Gromova
Federal Research Center Computer Sciences and Control, Russian Academy of Sciences; Moscow State University
Russian Federation

Olga A. Gromova - MD, Dr Sci Med, Professor, Senior Researcher, Scientific Director of the Federal Research Center Computer Sciences and Control, RAS; Leading Researcher, Center for Big Data Analysis, MSU, Scopus Author ID: 7003589812; WoS Researcher ID: J-4946-2017; RSCI SPIN-code: 6317-9833; eLIBRARY ID: 94901

44-2 Vavilova Str., Moscow 119333; 1 Leninskie gory, Moscow 119991



I. Yu. Torshin
Federal Research Center Computer Sciences and Control, Russian Academy of Sciences; Moscow State University
Russian Federation

Ivan Yu. Torshin - MD, PhD, Senior Researcher, Federal Research Center Computer Sciences and Control, RAS; Big Data Storage and Analysis Center, MSU; Scopus Author ID: 7003300274; WoS Researcher ID: C-7683-2018; RSCI SPIN-code: 1375-1114; eLIBRARY ID: 54104.

44-2 Vavilova Str., Moscow 119333; 1 Leninskie gory, Moscow 119991



V. A. Maksimov
Russian Medical Academy of Postgraduate Education
Russian Federation

Valery A. Maksimov - MD, Dr Sci Med, Professor, Honored Scientist of the Russian Federation, Honored Doctor of the Russian Federation; Professor of the Department of Dietetics and Nutrition.

2-1 Barrikadnaya Str., 123995 Moscow



A. G. Chuchalin
Russian National Research Medical University
Russian Federation

Alexander G. Chuchalin - MD, Dr Sci Med, Academician of the Russian Academy of Sciences, Pulmonologist, Head of the Department of Hospital Therapy of the Pediatric Faculty of the RNRMU named after N.I. Pirogov.

1 Ostrovityanova Str., Moscow 117997


V. G. Zgoda
Institute of Biomedical Chemistry (IBMC)
Russian Federation

Victor G. Zgoda - MD, Dr Sci Med.

10 Pogodinskaya Str., Moscow 119121



А. N. Gromov
Federal Research Center Computer Sciences and Control, Russian Academy of Sciences; Moscow State University
Russian Federation

Andrey N. Gromov - research engineer of the Federal Research Center Computer Sciences and Control, RAS; Researcher of the Center for Big Data Analysis, MSU; Scopus Author ID: 7102053964; WoS Researcher ID: C-7476-2018; RSCI SPIN-code: 8034-7910; eLIBRARY ID: 15082.

44-2 Vavilova Str., Moscow 119333; 1 Leninskie gory, Moscow 119991



O. V. Tikhonova
Institute of Biomedical Chemistry (IBMC)
Russian Federation

Olga V. Tikhonova - PhD (Biology).

10 Pogodinskaya Str., Moscow 119121



References

1. Liu C., Jiang Z.C., Shao C.X., Zhang H.G., Yue H.M., Chen Z.H., Ma B.Y., Liu W.Y., Huang H.H., Yang J., Wang Y., Liu H.Y., Xu D., Wang J.T., Yang J.Y., Pan H.Q., Zou S.Q., Li F.J., Lei J.Q., Li X., He Q., Gu Y., Qi X.L. Preliminary study of the relationship between novel coronavirus pneumonia and liver function damage: a multicenter study. Zhonghua GanZang BingZaZhi. 2020 Feb 20; 28 (2): 148-152. https://doi.org/10.3760/cma.j.issn.1007-3418.2020.02.003.

2. Iron overload diseases (hemochromatosis). Ed. A.G. Rumyantseva, Yu.N. Tokarev. Moscow. 328 p. (in Russ).

3. Makatsariya A.D., Grigorieva K.N., Mingalimov M.A., Bitsadze V.O., Khizroeva J.Kh., Tretyakova M.V., Elalamy I., Shkoda A.S., Nemirovskiy V.B., Blinov D.V., Mitryuk D.V. Coronavirus disease (COVID-19) and disseminated intravascular coagulation. Akusherstvo, Ginekologiya i Reproduktsiya = Obstetrics, Gynecology and Reproduction. 2020; 14 (2): 123-131. (In Russ.). https://doi.org/10.17749/2313-7347.132.

4. Gromova O.A., Torshin I.Yu., Shapovalova Yu.O., Kurtser M.A., Chuchalin A.G. COVID-19 and iron deficiency anemia: relationships of pathogenesis and therapy. Akusherstvo, Ginekologia i Reprodukcia = Obstetrics, Gynecology and Reproduction. 2020; 14 (5): 644-655. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2020.179.

5. Torshin I.Yu., Gromova O.A. Worldwide experience of the therapeutic use of the human placental hydrolytes. Experimental and Clinical Gastroenterology. 2019;1(10):79-89. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-170-10-79-89.

6. Maksimov V. A., Torshin I. Yu., Chuchalin A. G., Lazebnik L. B., Tkacheva O. N., Strazhesko I. D., Gromova O. A. The effectiveness and safety of a polypeptide drug (Laennec) for the treatment of COVID-19. Experimental and Clinical Gastroenterology. 2020; 178 (6): 55-63. (In Russ.).

7. Kates M. Technique of lipidology. Moscow. 1975; 322 p.

8. Gromova O.A., Torshin I.Yu., Zgoda V.G., Tikhonova O.V. An analysis of the peptide composition of a «light» peptide fraction of Cerebrolysin. S.S. Korsakov Journal of Neurology and Psychiatry = Zhurnal Nevrologii ipsikhiatrii im. S.S. Korsakova. 2019; 119 (8): 7583. (In Russ.) https://doi.org/10.17116/jnevro201911908175.

9. Torshin I.Y., Rudakov K.V. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 1: factorization approach. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2017; 27 (1): 16-28.

10. Torshin I.Yu., Rudakov K.V. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 2: metric approach within the framework of the theory of classification of feature values. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2017; 27 (2): 184-199.

11. Torshin I.Y. Optimal dictionaries of the final information on the basis of the solvability criterion and their applications in bioinformatics. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2013; 23 (2): 319-327.

12. Torshin I. Yu., Rudakov K. V. On the theoretical basis of the metric analysis of poorly formalized problems of recognition and classification. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2015; 25 (4): 577-587.

13. Torshin I.Yu., Rudakov K.V. On metric spaces arising during formalization of problems of recognition and classification. Part 2: density properties. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2016; 26 (3): 483-496.

14. Torshin I.Y., Rudakov K.V. On the application of the combinatorial theory of solvability to the analysis of chemographs. part 1: fundamentals of modern chemical bonding theory and the concept of the chemograph. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2014; 24 (1): 11-23.

15. Torshin I. Yu., Rudakov K. V. On the Procedures of Generation of Numerical Features Over Partitions of Sets of Objects in the Problem of Predicting Numerical Target Variables. Pattern Recognition and Image Analysis. 2019; 29 (4): 654-667. https://dx.doi.org/10.1134/S1054661819040175.

16. Faber H.R., Bland T., Day C.L., Norris G.E., Tweedie J.W., Baker E.N. Altered domain closure and iron binding in transferrins: the crystal structure of the Asp60Ser mutant of the amino-terminal half-molecule of human lactoferrin. J Mol Biol. 1996 Feb 23; 256 (2): 352-63. https://dx.doi.org/10.1006/jmbi.1996.0091.

17. Gromova O.A., Torshin I.YU., Volkov A.YU., Smarygin S.N., Nazarenko O.A. The drug “LAENNEK”: elemental composition and pharmacological action. Plasticheskaya khirurgiya i kosmetologiya. 2010; 327-333. (In Russ.)

18. Chang T.Y., Liu K.L., Chang C.S., Su C.T., Chen S.H., Lee Y.C., Chang J.S. Ferric Citrate Supplementation Reduces Red-Blood-Cell Aggregation and Improves CD163+ Macrophage-Mediated Hemoglobin Metabolism in a Rat Model of High-Fat-Diet-Induced Obesity. Mol Nutr Food Res. 2018 Jan; 62 (2).

19. Zhao Q., Garreau I., Sannier F., Piot J.M. Opioid peptides derived from hemoglobin: hemorphins. Biopolymers. 1997; 43 (2): 75-98.

20. Gromova O.A., Torshin I.Yu., Grishina T.R., Tomilova I.K. Value of the use of iron preparations and molecular synergists for the prevention and treatment of iron-deficiency anemia in pregnant women. Rossiyskiy vestnik akushera-ginekologa. 2015; 15 (4): 85-94. (In Russ.) https://doi.org/10.17116/rosakush201515485-94.

21. Mollbrink A., Holmstrom P., Sjostrom M., Hultcrantz R., Eriksson L.C., Stal P. Iron-regulatory gene expression during liver regeneration. Scand J Gastroenterol. 2012 May; 47 (5): 591v600. https://doi.org/10.3109/00365521.2012.661761.

22. De Falco L., Silvestri L., Kannengiesser C., et al. Functional and clinical impact of novel TMPRSS6 variants in iron-refractory iron-deficiency anemia patients and genotype-phenotype studies. Hum Mutat. 2014; 35 (11): 1321-1329. https://doi.org/10.1002/humu.22632.

23. Niederkofler V., Salie R., Arber S. Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe iron overload. J Clin Invest. 2005; 115 (8): 2180-2186. https://doi.org/10.1172/JCI25683.

24. Zhang A.S.. Control of systemic iron homeostasis by the hemojuvelin-hepcidin axis. Adv Nutr. 2010; 1 (1): 38-45. https://doi.org/10.3945/an.110.1009.

25. Core A.B., Canali S., Babitt J.L. Hemojuvelin and bone morphogenetic protein (BMP) signaling in iron homeostasis. Front Pharmacol. 2014; 5: 104. Published 2014 May 13. https://doi.org/10.3389/fphar.2014.00104.

26. Kuninger D., Kuns-Hashimoto R., Nili M., Rotwein P. Pro-protein convertases control the maturation and processing of the iron-regulatory protein, RGMc/hemojuvelin. BMC Biochem. 2008; 9: 9. https://doi.org/10.1186/1471-2091-9-9.

27. Silvestri L., Pagani A., Camaschella C. Furin-mediated release of soluble hemojuvelin: a new link between hypoxia and iron homeostasis. Blood. 2008; 111 (2): 924-931.

28. Silvestri L., Pagani A., Nai A., De Domenico I., Kaplan J., Camaschella C. The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab. 2008; 8 (6): 502-511. https://doi.org/10.1016/j.cmet.2008.09.012.

29. Colucci S., Pagani A., Pettinato M., Artuso I., Nai A., Camaschella C., Silvestri L. The immunophilin FKBP12 inhibits hepcidin expression by binding the BMP type I . receptor ALK2 in hepatocytes. Blood. 2017 Nov 9; 130 (19): 2111--2120.

30. Chen Y.G., Liu F., Massague J. Mechanism of TGF-beta receptor inhibition by FKBP12. EMBO J. 1997 Jul 1; 16 (13): 3866-76. https://doi.org/10.1093/emboj/16.13.3866.

31. Vashisht A.A., Zumbrennen K.B., Huang X., Powers D.N., Durazo A., Sun D., Bhaskaran N., Persson A., Uhlen M., Sangfelt O., Spruck C., Leibold E.A., Wohlschlegel J.A. Control of iron homeostasis by an iron-regulated ubiquitin ligase. Science. 2009 Oct 30; 326 (5953): 718-21. https://doi.org/10.1126/science.1176333.

32. D’Angiolella V., Donato V., Vijayakumar S., Saraf A., Florens L., Washburn M.P., Dynlacht B., Pagano M. SCF(Cyclin F) controls centrosome homeostasis and mitotic fidelity through CP110 degradation. Nature. 2010 Jul 1; 466 (7302): 138-42. https://doi.org/10.1038/nature09140.

33. Rachez C., Gamble M., Chang C.P., Atkins G..B., Lazar M.A., Freedman L.P. The DRIP complex and SRC-1/p160 coactivators share similar nuclear receptor binding determinants but constitute functionally distinct complexes. Mol Cell Biol. 2000 Apr; 20 (8): 271826. https://doi.org/10.1128/mcb.20.8.2718-2726.2000.

34. Burakov D., Wong C.W., Rachez C., Cheskis B.J., Freedman L.P. Functional interactions between the estrogen receptor and DRIP205, a subunit of the heteromeric DRIP coactivator complex. J Biol Chem. 2000 Jul 7; 275 (27): 20928-34. https://doi.org/10.1074/jbc.M002013200.

35. Gorla-Bajszczak A., Juge-Aubry C., Pernin A., Burger A.G., Meier C.A. Conserved amino acids in the ligand-binding and tau(i) domains of the peroxisome proliferator-activated receptor alpha are necessary for heterodimerization with RXR. Mol Cell Endocrinol. 1999 Jan 25; 147 (1-2): 37-47. https://doi.org/10.1016/s0303-7207(98)00217-2.

36. Tsuchiya H. Retinoids as promising treatment for non-alcoholic fatty liver disease. Yakugaku Zasshi. 2012; 132 (8): 903-9. https://doi.org/10.1248/yakushi.132.903.

37. Citelli M., Bittencourt L.L., da Silva S.V., Pierucci A.P., Pedrosa C. Vitamin A modulates the expression of genes involved in iron bioavailability. Biol Trace Elem Res. 2012 Oct; 149 (1): 64-70. https://doi.org/10.1007/s12011-012-9397-6.

38. Jiang S., Wang C.X., Lan L., Zhao D. Vitamin A deficiency aggravates iron deficiency by upregulating the expression of iron regulatory protein-2. Nutrition. 2012 Mar; 28 (3): 281-7. https://doi.org/10.1016Zj.nut.2011.08.015.

39. Li X., Liu Y., Zheng Q., Yao G., Cheng P., Bu G., Xu H., Zhang Y.W. Ferritin light chain interacts with PEN-2 and affects Y-secretase activity. Neurosci Lett. 2013 Aug 26; 548: 90-4. https://doi.org/10.1016/j.neulet.2013.05.018.

40. Nazarenko O.A., Gromova O.A., Grishina T.R., Torshin I.Yu., Demidov V.I., Tomilova I.K., Aleksakhina E.L., Gogoleva I.V. Correction by Laennec of chronic iron overload liver, kidneys and brain. Pharmacokinetics and pharmacodynamics. 2017; 2: 39-44. (in Russ).

41. Temporary guidelines of the Ministry of Health of the Russian Federation “Prevention, diagnosis and treatment of new coronavirus infection (COVID-19)”, 5th version of 08/04/2020 (in Russ).

42. Gromova O.A., Torshin I.Yu, Hadzhidis A.K. Adverse effects of iron sulfate in obstetrics, pediatrics and therapeutics. Zemskij vrach. 2010; 2: 1-8. (In Russ.).

43. Khizroeva J.Kh., Makatsariya A.D., Bitsadze V.O., Tretyakova M.V., Slukhanchuk E.V., Elalamy I., Gris J.-С, Radetskaya L.S., Makatsariya N.A., Sulina Ya.Yu., Tsibizova V.I., Shkoda A.S., Blinov D.V. Laboratory monitoring of COVID-19 patients and importance of coagulopathy markers. Akusherstvo, Ginekologiya i Reproduktsiya = Obstetrics, Gynecology and Reproduction. 2020; 14 (2): 132-147. (In Russ.). https://doi.org/10.17749/2313-7347.141.


Review

For citations:


Gromova O.A., Torshin I.Yu., Maksimov V.A., Chuchalin A.G., Zgoda V.G., Gromov А.N., Tikhonova O.V. Peptides contained in the composition of Laennec that contribute to the treatment of hyperferritinemia and iron overload disorders. FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2020;13(4):413-425. (In Russ.) https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.070

Views: 1432


ISSN 2070-4909 (Print)
ISSN 2070-4933 (Online)