Chemomicrobiomic analysis of glucosamine sulfate, prebiotics and non-steroidal anti-inflammatory drugs
https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.049
Abstract
Introduction. The pharmaceutical drugs used in the treatment of osteoarthritis (OA) differ not only in the mechanisms of anti-inflammatory action but also in the effects on the human microbiome.
Purpose. Evaluation of the influence of some drugs used in the therapy of OA on the human microbiome by the method of chemoinformation analysis.
Materials and methods. Сomparative chemomicrobiome analysis of glucosamine sulfate (GS), diclofenac, acetylsalicylic acid (ASA), and three prebiotics (lactose, lactulose, fructose) as molecules of comparison. For each substance, estimates of the area under the curve (AUC) were obtained for a representative sampling of human microbiota (38 commensal bacteria). The minimum inhibitory concentrations (MIC) were established for more than 120 pathogenic bacteria.
Results. On average, according to a representative sampling of microbiota, the profile of the action of GS on the microbiome was almost identical to the profile of the action of lactose (AUC=0.23±0.18). The most effective growth of the microbiome was provided by fructose and lactulose (AUC=0.58±0.21). The effects of diclofenac and ASA on the commensals of microbiome were comparable to the effects of GS (AUC=0.27±0.22). However, the analysis of the obtained MIC values for pathogenic bacteria showed that diclofenac supported the growth of the pathogenic flora (MIC=35±1.4 μg/ml) to a greater extent than GS (MIC=16±1.5 μg/ml) and ASA (MIC=23±2.2 μg/ml).
Conclusion. The effects of GS on the microbiome are comparable to the effects of the prebiotic lactose whereas the inhibitory effect of GS and ASA on pathogenic bacteria is more pronounced than that of diclofenac. The inhibition of pathogenic bacteria by the GS helps to reduce inflammation.
Keywords
About the Authors
O. A. GromovaRussian Federation
Olga A. Gromova – MD, Dr Sci Med, Professor, Senior Researcher, Scientific Director of the Federal Research Center “Informatics and Management”, Russian Academy of Sciences; Leading Researcher, Center for Big Data Analysis, Author ID: 94901, Scopus Author ID: 7003589812, WoS ResearcherID: J-4946-2017, RSCI SPIN-code: 6317-9833, 34A Kashirskoye Shosse, Moscow 115522, Russia; 1 Leninskie gory, Moscow 119991, Russia
I. Yu. Torshin
Russian Federation
Ivan Yu. Torshin – MD, PhD, Senior Researcher, Federal Research Center “Informatics and Management”, Russian Academy of Sciences; Big Data Storage and Analysis Center, Scopus Author ID: 7003300274, Author ID: 54104, WoS ResearcherID: C-7683-2018, RSCI SPIN-code: 1375-1114, 34A Kashirskoye Shosse, Moscow 115522, Russia; 1 Leninskie gory, Moscow 119991, Russia
A. V. Naumov
Russian Federation
Anton V. Naumov – MD, Dr Sci Med, Professor, head of the laboratory of diseases of the musculoskeletal system of the Russian gerontological scientific clinical center, AuthorID 393279, RSCI SPIN-code: 4763-9738, 1 Ostrovityanova Str., Moscow 117997, Russia
V. A. Maksimov
Russian Federation
Valery A. Maksimov – MD, Dr Sci Med, Professor, Honored Scientist of the Russian Federation, Honored Doctor of the Russian Federation, Vice President of the Scientific Society of Gastroenterologists of Russia, Professor of the Department of Dietetics and Nutrition, 2-1 Barrikadnaya Str., Moscow 123995, Russia
References
1. Liu J., Lahousse L., Nivard M.G., Bot M., Chen L., van Klinken J.B., Thesing C.S., Beekman M., van den Akker E.B., Slieker R.C., Waterham E., van der Kallen C.J.H., de Boer I., Li-Gao R., Vojinovic D., Amin N., Radjabzadeh D., Kraaij R., Alferink L.J.M., Murad S.D., Uitterlinden A.G., Willemsen G., Pool R., Milaneschi Y., van Heemst D., Suchiman H.E.D., Rutters F., Elders P.J.M., Beulens J.W.J., van der Heijden A.A.W.A., van Greevenbroek M.M.J., Arts I.C.W., Onderwater G.L.J., van den Maagdenberg A.M.J.M., Mook-Kanamori D.O., Hankemeier T., Terwindt G.M., Stehouwer C.D.A., Geleijnse J.M., 't Hart L.M., Slagboom P.E., van Dijk K.W., Zhernakova A., Fu J., Penninx B.W.J.H., Boomsma D.I., Demirkan A., Stricker B.H.C., van Duijn C.M. Integration of epidemiologic, pharmacologic, genetic and gut microbiome data in a drug-metabolite atlas. Nat Med. 2020 Jan; 26 (1): 110–117. https://doi.org/10.1038/s41591-019-0722-x. Epub 2020 Jan 13. PubMed PMID: 31932804.
2. Dworsky-Fried Z., Kerr B.J., Taylor A.M.W. Microbes, microglia, and pain. Neurobiol Pain. 2020; 7: 100045. Published 2020 Jan 29. https://doi.org/10.1016/j.ynpai.2020.100045.
3. Hernandez C.J. The Microbiome and Bone and Joint Disease. Curr Rheumatol Rep. 2017; 19 (12): 77. Published 2017 Nov 4. https://doi.org/10.1007/s11926-017-0705-1.
4. Gromova O.A., Torshin I.Yu., Garasko E.A. Molecular mechanisms of destruction of bacterial films with topical application of ascorbic acid. Ginekologia. 2010; 12 (6): 12-17. (In Russ) ID:15596416
5. Dubreuil M., Louie-Gao Q., Peloquin C.E., Choi H.K., Zhang Y., Neogi T. Risk of myocardial infarction with use of selected non-steroidal anti-inflammatory drugs in patients with spondyloarthritis and osteoarthritis. Ann Rheum Dis. 2018;77(8):1137-1142. https://ard.bmj.com/content/77/8/1137
6. Horvath A., Leber B., Feldbacher N., Steinwender M., Komarova I., Rainer F., Blesl A., Stadlbauer V. The effects of a multispecies synbiotic on microbiome-related side effects of long-term proton pump inhibitor use: A pilot study. Sci Rep. 2020 Feb 17; 10 (1): 2723. http://dx.doi.org/10.1136/annrheumdis-2018-213089.
7. Szychlinska M.A., Di Rosa M., Castorina A., Mobasheri A., Musumeci G. A correlation between intestinal microbiota dysbiosis and osteoarthritis. Heliyon. 2019 Jan 12; 5 (1): e01134. https://doi.org/10.1016/j.heliyon.2019.e01134.
8. Simoni G., Maccauro G., Fenga D., De Santis V., Orani R.A., Centofanti F., Rosa M.A. Arthrodesis of the ankle joint in septic osteoarthritis: six years long term outcomes in authors' personal experience. Eur Rev Med Pharmacol Sci. 2019 Apr; 23 (2 Suppl): 139–144. https://doi.org/10.26355/eurrev_201904_17483.
9. Hu S., Wang J., Xu Y., et al. Anti-inflammation effects of fucosylated chondroitin sulphate from Acaudina molpadioides by altering gut microbiota in obese mice. Food Funct. 2019; 10 (3): 1736–1746. https://doi.org/10.1039/c8fo02364f.
10. Maier L., Pruteanu M., Kuhn M., Zeller G., Telzerow A., Anderson E.E., Brochado A.R., Fernandez K.C., Dose H., Mori H., Patil K.R., Bork P., Typas A. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018 Mar 29; 555 (7698): 623–628. https://doi.org/10.1038/nature25979.
11. Torshin I. Yu., Gromova O. A., Zakcharova I. N., Maximov V. A. Hemomikrobiomny lactitol analysis. Experimental and Clinical Gastroenterology. 2019; 164 (4): 111–121. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-164-4-111-121.
12. Torshin I.Yu., Rudakov K.V. On the theoretical basis of metric analysis of poorly formalized problems of recognition and classification. Pattern Recognition and Image Analysis. 2015; 25 (4): 577–587.
13. Torshin I.Y., Rudakov K.V. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 1: factorization approach. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2017; 27 (1): 16–28.
14. Torshin I.Yu, Rudakov K.V. On metric spaces arising during formalization of problems of recognition and classification. Part 2: Density properties. Pattern Recognit. Image Anal. 2016; 26 (3): 483–496.
15. Torshin I.Y. The study of the solvability of the genome annotation problem on sets of elementary motifs. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2011; 21 (4): 652–662.
16. Torshin I.Yu, Rudakov K.V. On the procedures of generation of numerical features over the splits of a set of objects and the problem of prediction of numeric target variables. Pattern Recognition and Image Analysis. 2019; 29 (2): 65–75.
17. Kim S., Chen J., Cheng T., Gindulyte A., He J., He S., Li Q., Shoemaker B.A., Thiessen P.A., Yu B., Zaslavsky L., Zhang J., Bolton E.E. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 2019 Jan 8; 47 (D1): D1102–D1109. https://doi.org/10.1093/nar/gky1033.
18. A framework for human microbiome research. Nature. 2012 Jun 13; 486 (7402): 215–21. https://doi.org/10.1038/nature11209.
19. The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe. 2014 Sep 10; 16 (3): 276–89. https://doi.org/10.1016/j.chom.2014.08.014.
20. Otani K., Tanigawa T., Watanabe T., Shimada S., Nadatani Y., Nagami Y., Tanaka F., Kamata N., Yamagami H., Shiba M., Tominaga K., Fujiwara Y., Arakawa T. Microbiota Plays a Key Role in Non-Steroidal Anti-Inflammatory Drug-Induced Small Intestinal Damage. Digestion. 2017; 95 (1): 22–28. https://doi.org/10.1159/000452356.
21. Reuter B.K., Davies N.M., Wallace J.L. Nonsteroidal antiinflammatory drug enteropathy in rats: role of permeability, bacteria, and enterohepatic circulation. Gastroenterology. 1997; 112: 109–117.
22. Hersoug L.G., Møller P., Loft S. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity. Obes Rev. 2016 Apr; 17 (4): 297-312. https://doi.org/10.1111/obr.12370.
23. Zhang D.M., Jiao R.Q., Kong L.D. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions. Nutrients. 2017 Mar 29; 9 (4). pii: E335. https://doi.org/10.3390/nu9040335.
24. Gromova O.A., Torshin I.Yu., Lila A.M., et al. Differential chemoreactome analysis of glucosamine sulfate and non-steroidal antiinflammatory drugs: promising synergistic drug combinations. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2018; 12 (2): 36–43 (In Russ). https://doi.org/10.14412/1996-7012-2018-2-36-43.
25. Gromova O.A., Torshin I.Yu., Lila A.M., Gromov A.N. Molecular mechanisms of action of glucosamine sulfate in the treatment of degenerative-dystrophic diseases of the joints and spine: results of proteomic analysis. Neurology, Neuropsychiatry, Psychosomatics. 2018; 10 (2): 38–44. (In Russ.) https://doi.org/10.14412/2074-2711-2018-2-38-44.
26. Bell G.A., Kantor E.D., Lampe J.W., Shen D.D., White E. Use of glucosamine and chondroitin in relation to mortality. Eur J Epidemiol. 2012 Aug; 27 (8): 593–603. https://doi.org/10.1007/s10654-012-9714-6.
27. State Pharmacopoeia of the Russian Federation. 14th ed. Vol. 1. Moscow; 2018. (In Russ).
28. Reginster J.L., Bruyere O., Cooper C. Different glucosamine sulfate products generate different outcomes on osteoarthritis symptoms. Ann Rheum Dis. 2018; 77 (7): e39. https://doi.org/10.1136/annrheumdis-2017-212251.
29. Bruyère O., Honvo G., Veronese N., et al. An updated algorithm recommendation for the management of knee osteoarthritis from the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Semin Arthritis Rheum. 2019; 49 (3): 337–350. https://doi.org/10.1016/j.semarthrit.2019.04.008.
Review
For citations:
Gromova O.A., Torshin I.Yu., Naumov A.V., Maksimov V.A. Chemomicrobiomic analysis of glucosamine sulfate, prebiotics and non-steroidal anti-inflammatory drugs. FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2020;13(3):270-282. (In Russ.) https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.049

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.