Preview

FARMAKOEKONOMIKA. Modern Pharmacoeconomic and Pharmacoepidemiology

Advanced search

Is it worthwhile rethinking the positive experience of the last 50 years of using chondroitin sulfates against atherosclerosis?

https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.043

Full Text:

Abstract

Chondroitin sulfate (CS) and glucosamine sulfate (GS) are used in the treatment of osteoarthritis and exhibit a pronounced anti-inflammatory effect. CS/GS inhibit the NF-kB signaling cascade, which realizes the biological effects of tumor necrosis factor (TNFa). Excessive activity of NF-kB also stimulates the development of atherosclerosis. The results of experimental and clinical studies show that inhibition of NF-kB by CS/GS will inhibit the formation and growth of atherosclerotic plaques also reducing levels of other markers of inflammation.

About the Authors

A. M. Lila
V.A. Nasonov Research Institute of Rheumatology
Russian Federation

MD, Dr Sci Med, Professor, Director

Scopus Autor ID: 6602550827; eLIBRARY ID: 367966; Researcher ID: W-3334-2017-7287-8555

34A Kashirskoye Shosse, Moscow 115522, Russia



I. Yu. Torshin
Federal Research Center “Informatics and Management of the Russian Academy of Sciences“
Russian Federation

MD, PhD, Senior Researcher; Big Data Storage and Analysis Center

Scopus Author ID: 7003300274; Author ID: 54104; WoS ResearcherID: C-7683-2018;

RSCI SPIN-code: 1375-1114  

44-2 Vavilova Str., Moscow 119333, Russia



O. A. Gromova
Federal Research Center “Informatics and Management of the Russian Academy of Sciences“; Moscow State University
Russian Federation

MD, Dr Sci Med, Professor, Senior Researcher, Scientific Director; Leading Researcher, Center for Big Data Analysis

Author ID: 94901; Scopus Author ID: 7003589812; WoS ResearcherID: J-4946-2017;

RSCI SPIN-code: 6317-9833

44-2 Vavilova Str., Moscow 119333, Russia

1 Leninskie gory, Moscow 119991, Russia



References

1. Karangelis D. E., Kanakis I., Asimakopoulou A. P., Karousou E., Passi A., Theocharis A. D., Triposkiadis F., Tsilimingas N. B., Karamanos N. K. Glycosaminoglycans as key molecules in atherosclerosis: the role of versican and hyaluronan. Curr Med Chem. 2010; 17 (33): 4018-26. DOI: http://dx.doi.org/10.2174/092986710793205354.

2. Lila A. M., Gromova O. A., Torshin I. Yu., Nazarenko A. G., Gogolev A. Yu. Molecular effects of chondrogard in osteoarthritis and herniated disc. Nevrologiya, neiropsikhiatriya, psikhosomatika. 2017; 9 (3): 88–97. (in Russ). DOI: http://dx.doi.org/10.14412/2074-2711-2017-3-88-97.

3. Gromova O. A., Torshin I. Yu., Lila A. M., Nazarenko A. G., Zolotovskaya I. A. Prevention of restenosis in patients after percutaneous coronary intervention: possible pathogenetic approach. RMZh. 2019; 27 (8-1): 33–40.

4. Gromova O. A., Torshin I. Y., Lila A. M., Naumov A. V., Reier I. A., Karateev A. E. Differential chemoreactome analysis of glucosamine sulfate and non-steroidal anti-inflammatory drugs: promising synergistic drug combinations. Modern Rheumatology Journal. 2018; 12 (2): 36-43. (In Russ.) DOI: https://doi.org/10.14412/1996-7012-2018-2-36-43.

5. Pan J. X. LncRNA H19 promotes atherosclerosis by regulating MAPK and NF-kB signaling pathway. Eur Rev Med Pharmacol Sci. 2017 Jan; 21 (2): 322–328. PMID: 28165553.

6. Song D., Fang G., Mao S. Z., Ye X., Liu G., Miller E. J., Greenberg H., Liu S. F. Selective inhibition of endothelial NF-kB signaling attenuates chronic intermittent hypoxia-induced atherosclerosis in mice. Atherosclerosis. 2018 Mar; 270: 68–75. DOI: http://dx.doi.org/10.1016/j.atherosclerosis.2018.01.027. Epub 2018 Jan 31. PMID: 29407890.

7. Xiao Y., He M., Liang X., She J., He L., Liu Y., Zou J., Yuan Z. Pu-erh Tea Ameliorates Atherosclerosis Associated with Promoting Macrophage Apoptosis by Reducing NF-kB Activation in ApoE Knockout Mice. Oxid Med Cell Longev. 2018 Aug 23; 3197829. DOI: http://dx.doi.org/10.1155/2018/3197829.

8. Ji L., Du Q., Li Y., Hu W. Puerarin inhibits the inflammatory response in atherosclerosis via modulation of the NF-kB pathway in a rabbit model. Pharmacol Rep. 2016 Oct; 68 (5): 1054-9. DOI: http://dx.doi.org/10.1016/j.pharep.2016.06.007.

9. Li W., Zhi W., Zhao J., Li W., Zang L., Liu F., Niu X. Cinnamaldehyde attenuates atherosclerosis via targeting the IkB/NF-kB signaling pathway in high fat diet-induced ApoE(−/−) mice. Food Funct. 2019 Jul 17; 10 (7): 4001–4009. DOI: http://dx.doi.org/10.1039/c9fo00396g.

10. Khyzha N., Alizada A., Wilson M. D., Fish J. E. Epigenetics of Atherosclerosis: Emerging Mechanisms and Methods. Trends Mol Med. 2017 Apr; 23 (4): 332–347. DOI: http://dx.doi.org/10.1016/j.molmed.2017.02.004.

11. Davignon J. L., Rauwel B., Degboé Y., Constantin A., Boyer J. F., Kruglov A., Cantagrel A. Modulation of T-cell responses by anti-tumor necrosis factor treatments in rheumatoid arthritis: a review. Arthritis Res Ther. 2018 Oct 12; 20 (1): 229. DOI: http://dx.doi.org/10.1186/s13075-018-1725-6.

12. Volpi N. Anti-inflammatory activity of chondroitin sulphate: new functions from an old natural macromolecule. Inflammopharmacology. 2011; 19 (6): 299–306. DOI: http://dx.doi.org/10.1007/s10787-011-0098-0.

13. Navarro S. L., White E., Kantor E. D., Zhang Y., Rho J., Song X., Milne G. L., Lampe P. D., Lampe J. W. Randomized trial of glucosamine and chondroitin supplementation on inflammation and oxidative stress biomarkers and plasma proteomics profiles in healthy humans. PLoS One. 2015; 10 (2):e0117534. DOI: http://dx.doi.org/10.1371/journal.pone.0117534.

14. Calamia V., Ruiz-Romero C., Rocha B., Fernandez-Puente P., Mateos J., Montell E., Verges J., Blanco F. J. Pharmacoproteomic study of the effects of chondroitin and glucosamine sulfate on human articular chondrocytes. Arthritis Res Ther. 2010; 12 (4): R138. DOI: http://dx.doi.org/10.1186/ar3077.

15. Melgar-Lesmes P., Sanchez-Herrero A., Lozano-Juan F., de la Torre Hernandez J. M., Montell E., Jimenez W., Edelman E. R., Balcells M. Chondroitin Sulphate Attenuates Atherosclerosis in ApoE Knockout Mice Involving Cellular Regulation of the Inflammatory Response. Thromb Haemost. 2018 Jul; 118 (7): 1329–1339. DOI: http://dx.doi.org/10.1055/s-0038-1657753.

16. Xiao Y., Li P., Cheng Y., Zhang Q., Wang F. Effect of alphalinolenic acid-modified low molecular weight chondroitin sulfate on atherosclerosis in apoE-deficient mice. Biochim Biophys Acta. 2016 Nov; 1860 (11 Pt A): 2589–2597. DOI: http://dx.doi.org/10.1016/j.bbagen.2016.07.032.

17. Melgar-Lesmes P., Garcia-Polite F., Del-Rey-Puech P., Rosas E., Dreyfuss J. L., Montell E., Verges J., Edelman E. R., Balcells M. Treatment with chondroitin sulfate to modulate inflammation and atherogenesis in obesity. Atherosclerosis. 2016 Feb; 245: 82-7. DOI: http://dx.doi.org/10.1016/j.atherosclerosis.

18. Martinez-Calatrava M. J., Largo R., Herrero-Beaumont G. Improvement of experimental accelerated atherosclerosis by chondroitin sulphate. Osteoarthritis Cartilage. 2010 Jun; 18 Suppl 1: S12-6. DOI: http://dx.doi.org/10.1016/j.joca.2010.01.014.

19. Herrero-Beaumont G., Marcos M. E., Sanchez-Pernaute O., Granados R., Ortega L., Montell E., Verges J., Egido J., Largo R. Effect of chondroitin sulphate in a rabbit model of atherosclerosis aggravated by chronic arthritis. Br J Pharmacol. 2008 Jun; 154 (4): 843-51. DOI: http://dx.doi.org/10.1038/bjp.2008.113.

20. Largo R., Martinez-Calatrava M. J., Sanchez-Pernaute O., Marcos M. E., Moreno-Rubio J., Aparicio C., Egido J., HerreroBeaumont G. Effect of a high dose of glucosamine on systemic and tissue inflammation in an experimental model of atherosclerosis aggravated by chronic arthritis. Am J Physiol Heart Circ Physiol. 2009 Jul; 297 (1): H268–76. DOI: http://dx.doi.org/10.1152/ajpheart.00142.2009.

21. Katoh A., Kai H., Harada H., Niiyama H., Ikeda H. Oral Administration of Glucosamine Improves Vascular Endothelial Function by Modulating Intracellular Redox State. Int Heart J. 2017 Dec 12; 58 (6): 926–932. DOI: http://dx.doi.org/10.1536/ihj.16-534.

22. Morrison L. M. Response of ischemic heart disease to chondroitin sulfate-A. J Am Geriatr Soc. 1969; 17 (10): 913–923.

23. Morrison L. M., Enrick N. Coronary heart disease: reduction of death rate by chondroitin sulfate A. Angiology 1973; 24 (05): 269–287.

24. Nakazawa K., Murata K. Comparative study of the effects of chondroitin sulfate isomers on atherosclerotic subjects. Z. Alternsforsch. 1979; 34 (02): 153–159.

25. Torshin I. Y., Gromova O. A., Lila A. M., Naumov A. V., Sorokina M. A., Rudakov K. V. The results of postgenomic analysis of a glucosamine sulfate molecule indicate the prospects of treatment for comorbidities. Modern Rheumatology Journal. 2018; 12 (4): 12–136. (In Russ.) DOI: https://doi.org/10.14412/1996-7012-2018-4-129-136.

26. Lila A. M., Gromova O. A., Torshin I. Y., Montell E. Molecular Effects of Chondroitin Sulfate in Osteoarthritis and Herniated Discs. J Rheumatol Arthritic Dis. 2018; 3 (2): 1–11.

27. Torshin I. Yu., Gromova O. A., Naumov A. V., Lila A. M. Chemical transcriptome analysis of glucosamine sulfate molecule in the context of post-genomic pharmacology. RMZh. 2019; 1 (1): 2–9 (In Russ.).

28. Gromova O. A., Torshin I. Y., Semenov V. A., Stakhovskaya L. I., Rudakov K. V. On the neurological roles of chondroitin sulfate and glucosamine sulfate: a systematic analysis.Neurology, Neuropsychiatry, Psychosomatics. 2019; 11 (3): 137–143 (In Russ.). DOI: https://doi.org/10.14412/2074-2711-2019-3-137-143.

29. Gromova O. A., Torshin I. Yu., Lila A. M., Romanov I. S., Nazarenko A. G. Systematic analysis of studies of the antitumor effects of chondroprotective glucosamine sulfate and chondroitin sulfate. RMZh. Meditsinskoe obozrenie. 2019; 4 (1): 4–10. (In Russ.)

30. Gromova O. A., Torshin I. Y., Lila A. M., Shostak N. A., Rudakov K. V. Molecular mechanisms of myoprotective action of chondroitin sulfate and glucosamine sulfate in sarcopenia. Neurology, Neuropsychiatry, Psychosomatics. 2019; 11 (1): 117–124 (In Russ.). DOI: https://doi.org/10.14412/2074-2711-2019-1-117-124.

31. Gromova O. A., Torshin I. Iu., Lila A. M. et al. On the safety of glucosamine sulfate in patients with insulin resistance. Consilium Medicum. 2019; 21 (4): 75–83. (In Russ.) DOI: http://dx.doi.org/10.26442/20751753.2019.4.190309.

32. Torshin I. Y., Lila A. M., Gromova O. A., Naumov A. V., Gromov A. N. On the anticoagulant and antiaggregatory properties of a glucosamine sulfate molecule. Modern Rheumatology Journal. 2019;13(3):135-141. (In Russ.) DOI: https://doi.org/10.14412/1996-7012-2019-3-135-141.

33. Chondrogard. Instructions for medical use. LP-N (000042) – (RG-RU). State Register of Medicines [Electronic resource] URL: https://www.grls.rosminzdrav.ru. Accessed: 02.16.2020.


For citation:


Lila A.M., Torshin I.Yu., Gromova O.A. Is it worthwhile rethinking the positive experience of the last 50 years of using chondroitin sulfates against atherosclerosis? FARMAKOEKONOMIKA. Modern Pharmacoeconomic and Pharmacoepidemiology. 2020;13(2):184-191. (In Russ.) https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.043

Views: 209


ISSN 2070-4909 (Print)
ISSN 2070-4933 (Online)