FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology

Advanced search

Economic barriers restraining the production of therapeutic recombinant human trypsin. Use of innovative technologies to overcome them

Full Text:


The aim of this review is to analyze reasons for the high cost of recombinant human trypsin, technological and economic obstacles limiting trypsin production and implementation, as well as practical means to solve these problems.

Materials and methods. The properties of human trypsin, the recombinant technology for its production, the marketing aspects and the prospective of enzyme therapy are addressed in this review that contains 44 references in Russian and english. Particular attention is paid to the methods that can boost the production of recombinant trypsin.

Results. Trypsin purified from the mammalian pancreas has been used for over 80 years in the enzyme therapy in various diseases. Genetically engineered human trypsin is proposed to be an innovative, safe and effective therapeutic protease. However the medical use of recombinant trypsin is slowed by its very high price and insufficient production. There is a need for novel biopharmaceutical technologies, as well optimized up-stream and down-stream processes to increase the yield of active recombinant trypsin and significantly reduce the production costs. Recombinant human trypsin that is priced similar to its animal analogues is preferable in all types of enzyme therapy.

Conclusion. Innovative biopharmaceutical technologies are expected to significantly reduce the production costs of recombinant human trypsin and stimulate its wider use in enzyme therapy and also in production of other therapeutic proteins.

About the Author

S. V. Ponomarenko
Russian Federation

Ponomarenko Sofiya Vasil’evna – Project Manager at SophiGen.

42 Siemensstraße, Bönen 59199.


1. UniProtKB – P07477 (TRY1_HUMAN). [electronic resource]. URL: Accessed: 08.07.2018.

2. Vandermarliere e., Mueller M., Martens L. Getting intimate with trypsin, the leading protease in proteomics. Mass Spectrometry Reviews. 2013; 32: 453-465.

3. Gaboriaud C., Serre L., Guy-Crotte O., Forest e., FontecillaCamps J. S. Crystal structure of human trypsin 1: unexpected phosphorylation of Tyr151. J. Mol. Biol. 1996; 259 (5): 995-1010. DOI: 10.1006/jmbi.1996.0376.

4. Rypniewski W., Pirrakis A., Vorgias C. e., Wilson K. S. evolutionary Devergence and Concervation of Trypsin. Protein engineering. 1994; 7 (1): 57-64.

5. Patent RU (11) 2 265 053 (13) C2 IPC C 12 N 9/76. The method of obtaining trypsin. Albulov AI, Samuylenko A. Ya., Fomenko A. S. and others. The patent holder is VNITIBP. Application: 2002134730/13, December 24, 2002. Published on: 27.11.2005. Bul. N 33. [Patent RU(11) 2 265 053(13) C2 MPk C 12 N 9/76. Sposob polucheniya tripsina. Albulov A. I., Samuylenko A.YA., Fomenko A. S. et al. Patentoobladatel’ – VNITIBP. Zayavka: 2002134730/13, 24.12.2002. opublikovano: 27.11.2005. Byul. N 33 (in Russian)].

6. Kislitsin Yu.A., Rebrikov D. V., Dunaevskiy Ya.e., Rudenskaya G. N. Bioorganicheskaya himiya (in Russian). 2003; 29 (3): 269-276.

7. Brodrick J. W., Largman C., Johnson J. H., Geokas M. C. Human Cation Trypsinogen Purification, Characterization, and Characteristic of Autoactivation. J. Biol. Chem. 1978; 253 (8): 2732-2736.

8. Iannucci N. B., Albanesi G. J., Marani M. M., Fernández H.M. Isolation of Trypsin from Bovine Pancreas Using Immobilized Benzamidine and Peptide CTPR Ligands in expanded Beds. Separat. Sci. Techn. 2005; 40: 3277-3287. DOI: 10.1080/01496390500423631.

9. Goudarzi B. Gh., Talebi M., Bagherian R., Haji Hosseini R. A simple, fast and commercial method for trypsin purification from bovine pancreas. Vet. Res. Biol. Prod. 2011; 24 (1-90): 33-39.

10. Buettner K., Kreisig T., Sträter N., Zuchner T. Protein surface charge of trypsinogen changes its activation pattern. BMC Biotechnology. 2014; 14 (960): 1-11. DOI: 10.1186/s12896-014-0109-5.

11. Hegyi e., Sahin-Toth M. Genetic Risk in Chronic Pancreatitis: The Trypsin-Dependent Pathway. Dig. Dis. Sci. 2017; 62: 1692-1701. DOI: 10.1007/s10620-017-4601-3.

12. Németh B. C., Wartmann T., Halangk W., Sahin-Tóth M. Autoactivation of Mouse Trypsinogens Is Regulated by Chymotrypsin C via Cleavage of the Autolysis Loop. J. Biol. Chem. 2013; 288 (33): 24049-62. DOI: 10.1074/jbc.M113.478800.

13. Grishina Z., Ostrowska e., Halangk W., Sahin-Toth M., Reiser G. Activity of recombinant trypsin isoforms on human proteinaseactivated receptors (PAR): mesotrypsin cannot activate epithelial PAR1, -2, but weakly activates brain PAR-1. British J. Pharmacology. 2005; 146: 990-999.

14. Yousef G. M., elliott M. B., Kopolovic A. D., Serry e., Diamandis e. P. Sequence and evolutionary analysis of the human trypsin subfamily of serine peptidases. Bioch. Bioph. Acta. 2004; 1698: 77-86.

15. Németh B. C., Sahin-Tóth M. Human cationic trypsinogen (PRSS1) variants and chronic pancreatitis. Am. J. Physiol. Gastrointest. Liver Phyiol. 2014; 306: G466-G473. DOI: 10.1152/ajpgi.00419.2013.

16. Hu C., Wen L., Deng L., Zhang C., Lugea A., Su H. Y., Waldron R. T., Pandol S. J., Xia Q. The Differential Role of Human Cationic Trypsinogen (PRSS1) p.R122H Mutation in Hereditary and Nonhereditary Chronic Pancreatitis: A Systematic Review and MetaAnalysis. Gastroenterol. Res. Pract. 2017; ID 9505460: 1-7. DOI: 10.1155/2017/9505460.

17. Roxas M. The Role of enzyme Supplementation in Digestive Disorders. Altern. Med. Rev. 2008; 13 (4): 307-314.

18. Ianiro G., Pecere S., Giorgio V., Gasbarrini A. and Cammarota G. Digestive enzyme Supplementation in Gastrointestinal Diseases. Current Drug Metabolism. 2016; 17 (2): 187-193.

19. Shah D., Mital K. The Role of Trypsin: Chymotrypsin in Tissue Repair. Adv. Ther. 2018; 35 (1): 31-42.

20. Konstan M. W., Frank J., Accurso F. J., Nasr S. Z., Ahrens R. C., Graff G. R. efficacy and safety of a unique enteric-coated bicarbonatebuffered pancreatic enzyme replacement therapy in children and adults with cystic fibrosis. Clin. Invest. 2013; 3 (8): 723-729.

21. Taylor C. J., Thieroff-ekerdt R., Shiff S., Magnus L., Fleming R., Gommoll C. Comparison of two pancreatic enzyme products for exocrine insufficiency in patients with cystic fibrosis. J. Cystic Fibrosis. 2016; 15: 675-680.

22. Petrides D. Bioprocess Design and economics. Bioseparations Science and engineering 2nd edition (ed by: Harrison R. G., Todd P. W., Rudge S. R., Petrides D. P.). Oxford University Press. 2015; 11.1-83.

23. Pan Y., Cheng K., Mao J., Liu F., Liu J., Ye M., Zou H. Quantitative proteomics reveals the kinetics of trypsin-catalyzed protein digestion. Anal. Bioanal. Chem. 2014; 406: 6247-6256.

24. Sarrouch B., Santos T. M., Miyoshi A., Dias R., Azevedo V. UpTo-Date Insight on Industrial enzymes Applications and Global Market. J. Bioproces. Biotechniq. 2012; (S4:002): 1-10.

25. Guidance for Industry exocrine Pancreatic Insufficiency Drug Products – Submitting NDAs U. S. Department of Health and Human Services Food and Drug Administration Center for Drug evaluation and Research (CDeR) April 2006 Clinical/Medical.

26. Global Recombinant Trypsin Solution Market Report 2018 by Manufacturer, Region, Type and Application, Forecast to 2023. [electronic resource]. URL: report/global-recombinant-trypsin-solution-market-report-2018by-250199. Accessed: 09.07.2018.

27. Trypsin recombinant, Proteomics Grade. [electronic resource]. URL: RTRYPRO?lang=de®ion=De RTRYP-RO Roche. Accessed: 09.07.2018.

28. Trypsin recombinant Pig. [electronic resource]. URL: https:// RYP/ datasheet.php?products_id=9422455. Accessed: 09.07.2018.

29. Trypsin Powder, Porcine 1:250. [electronic resource]. URL: de®ion= De. Accessed: 09.07.2018.

30. Recombinant Human Trypsin [electronic resource]. URL: Accessed: 08.07.2018.

31. Trypsin from bovine pancreas. [electronic resource]. URL: de®ion=De&cm_sp=Insite-_-prodRecCold_xviews-_-prodRecCold10-6. Accessed: 09.07.2018.

32. Trypsin from bovine pancreas. [electronic resource]. URL: de®ion=De&cm_sp=Insite-_-prodRecCold_xviews-_-prodRecCold5-5. Accessed: 09.07.2018.

33. Trypsin Bovine. [electronic resource]. URL: https://www. Accessed: 09.07.2018.

34. Recombinant – Protein Trypsin. [electronic resource]. URL: Recombinant-Protein/Trypsin/ datasheet.php?products_id=143731. Accessed: 09.07.2018.

35. Porcine Trypsin. [electronic resource]. URL: https://www. Trypsin Porcine. Accessed: 09.07.2018.

36. Zhang Y., Huang H., Yao X., Du G., ChenJ., Kang Z. High-yield secretory production of stable, active trypsin through engineering of the N-terminal peptide and self-degradation sites in Pichia pastoris. Bioresource Technology. 2018; 247: 81-87. biortech.2017.08.006.

37. Patent WO2011/030347 A1. Novel prolipase-bovine trypsinogen fusion proteins. Govindappa N., Nataraj N., Tiwari S., Hazra P., Patale M. B., Jothiraman G., Sastry K. Original Assignee Biocon Ltd. Priority date: 10.09.2009; Filled 26.10.2009 PCT/IN2009/000603.

38. Patent US 7,666,629 B2. Method for producing recombinant trypsin. Muller R., Glaser S., Geipel F., Thalhofer J.-P., Rexer B., Schneider C., Ratka M., Ronning S., eckstein H., Giessel C.; Assignee Roche Diagnostics Operations, Inc.- N. 11/853,483; Filled: 11.09.2007; PCT/eP02/01072

39. Hohenblum H., Vorauer-Uhl K., Katinger H., Mattanovich D. Bacterial expression and refolding of human trypsinogen. J. Biotechnology. 2004; 109 (1-2): 3-11.

40. Patent WO2012/104099 A1. Process for the production of recombinant trypsin. König P. Applicant GlucoMetrix AG. 1100899.2 Priority Date: 04.02.2011; International Filling 03.02.2012, PCT/ eP2012/000497.

41. Patent WO2016/081289 A1. Process for producing recombinant trypsin. Sleevi M. C., Lile J.; Original Assignee Merck Sharp & Dohme Corp. Priority date: 18.11.2014; International Filling: 13.112015 PCT/ US2015/060505.

42. Rasmussen B. Innovation and Commercialisation in the Biopharmaceutical Industry: Creating and Capturing Value. edward elgar Publishing Ltd. 2010; 326 p.

43. Fosgerau K., Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discovery Today. 2015; 20 (1): 122-128.

44. Yagudina R.I., Kulikov A.Yu., Litvinenko M.M. QALY: history, methodology and method future. FARMAKOeKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2010; 3 (1): 7-11.


For citations:

Ponomarenko S.V. Economic barriers restraining the production of therapeutic recombinant human trypsin. Use of innovative technologies to overcome them. FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2018;11(3):58-66. (In Russ.)

Views: 1503

ISSN 2070-4909 (Print)
ISSN 2070-4933 (Online)