Биосенсоры для измерений уровней оксида азота NO в биосубcтратах: систематический анализ
https://doi.org/10.17749/2070-4909/farmakoekonomika.2024.278
Аннотация
Оксид азота NO – сигнальная молекула, участвующая в многочисленных физических и патологических процессах в биологических системах. Высокочувствительные сенсорные материалы для измерения количеств NO in vivo в выдыхаемом воздухе и жидких средах организма (слюна, кровь, моча) могут быть полезным инструментом в диагностике и ведении пациентов с бронхолегочными, сердечно-сосудистыми, неврологическими и опухолевыми заболеваниями. Разработано несколько подходов к измерению NO в биосубстратах (включая выдыхаемый воздух) – флуоресценция/хемилюминесценция, электронный спиновый резонанс, электрохимические/амперометрические (органические и неорганические) и ферментативные/белковые сенсоры. Материалами для NO-сенсоров могут быть полупроводники, нитриды переходных металлов, комплексы фталоцианинов, производных порфирина и кобаламина с металлами. Создание сенсорных материалов на основе производных витамина В12 представляет собой актуальную исследовательскую задачу биомедицины. В статье систематизирована информация об использовании различных соединений в качестве материалов для NO-чувствительных и селективных сенсоров для измерения/оценки уровней NO в различных биосубстратах.
Об авторах
И. Ю. ТоршинРоссия
Торшин Иван Юрьевич, к.ф-м.н., к.х.н.
WoS ResearcherID: C-7683-2018.
Scopus Author ID: 7003300274.
ул. Вавилова, д. 44, корп. 2, Москва 119333.
О. А. Громова
Россия
Громова Ольга Алексеевна, д.м.н., проф.
WoS ResearcherID: J-4946-2017.
Scopus Author ID: 7003589812.
ул. Вавилова, д. 44, корп. 2, Москва 119333.
Л. А. Майорова
Россия
Майорова Лариса Александровна, д.ф.-м.н.
WoS ResearcherID: B-6288-2016.
Scopus Author ID: 58079684100.
ул. Вавилова, д. 44, корп. 2, Москва 119333;
Шереметевский пр-т, д. 7, Иваново 153000.
А. Н. Громов
Россия
Громов Андрей Николаевич
Scopus Author ID: 7102053964.
ул. Вавилова, д. 44, корп. 2, Москва 119333
Список литературы
1. Brown M.D., Schoenfisch M.H. Electrochemical nitric oxide sensors: principles of design and characterization. Chem Rev. 2019; 119 (22): 11551–75. https://doi.org/10.1021/acs.chemrev.8b00797.
2. Klyamer D., Shutilov R., Basova T. Recent advances in phthalocyanine and porphyrin-based materials as active layers for nitric oxide chemical sensors. Sensors. 2022; 22 (3): 895. https://doi.org/10.3390/s22030895.
3. Patra D.C., Mondal S.P. Paper-based electrochemical sensor integrated with gold nanoparticle-decorated carbon cloth as a working electrode for nitric oxide detection in artificial tears. ACS Appl Bio Mater. 2024; 7 (8): 5247–57. https://doi.org/10.1021/acsabm.4c00425.
4. Torshin I.Yг. On solvability, regularity, and locality of the problem of genome annotation. Pattern Recognit Image Anal. 2010; 20: 386–95. https://doi.org/10.1134/S1054661810030156.
5. Торшин И.Ю. О задачах оптимизации, возникающих при применении топологического анализа данных к поиску алгоритмов прогнозирования с фиксированными корректорами. Информатика и еe применения. 2023; 17 (2): 2–10. https://doi.org/10.14357/19922264230201.
6. Торшин И.Ю. О формировании множеств прецедентов на основе таблиц разнородных признаковых описаний методами топологической теории анализа данных. Информатика и еe применения. 2023, 17 (3): 2–7. https://doi.org/10.14357/19922264230301.
7. Торшин И.Ю., Громова О.А., Стаховская Л.В. и др. Анализ 19,9 млн публикаций базы данных PubMed/MEDLINE методами искусственного интеллекта: подходы к обобщению накопленных данных и феномен “fake news”. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020; 13 (2): 146–63. https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.021.
8. Торшин И.Ю., Громова О.А. Проблемы использования фенола (гидроксибензола) и парабенов в качестве стабилизаторов фармацевтических средств: анализ с применением методов машинного обучения. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2024: [принятая рукопись]. https://doi.org/10.17749/2070-4909/farmakoekonomika.2024.263.
9. Etches P.C., Harris M.L., McKinley R., Finer N.N. Clinical monitoring of inhaled nitric oxide: comparison of chemiluminescent and electrochemical sensors. Biomed Instrum Technol. 1995; 29 (2): 134–40.
10. Zhao T., Shu T., Lang J., et al. An Fe-organic framework/arginine-glycine-aspartate peptide-modified sensor for electrochemically detecting nitric oxide released from living cells. Biomater Sci. 2023; 11 (23): 7579–87. https://doi.org/10.1039/d3bm00923h.
11. Ma Z., Ma Z., Tang Z., et al. Construction of trace nitric oxide sensors at low temperature based on bulk embedded BiVO(4) in SnO(2) nanofibers with nano-heterointerfaces. Talanta. 2024; 281: 126814. https://doi.org/10.1016/j.talanta.2024.126814.
12. Chandran B., Janakiraman K. New disposable nitric oxide sensor fabrication using GaN nanowires. ACS Omega. 2019; 4 (17): 17171–6. https://doi.org/10.1021/acsomega.9b01609.
13. Zajda J., Schmidt N.J., et al. Performance of amperometric platinized-nafion based gas phase sensor for determining nitric oxide (NO) levels in exhaled human nasal breath. Electroanalysis. 2018; 30 (8): 1610–5. https://doi.org/10.1002/elan.201800140.
14. Wang Y., Hu S. Nitric oxide sensor based on poly (p-phenylenevinylene) derivative modified electrode and its application in rat heart. Bioelectrochemistry. 2009; 74 (2): 301–5. https://doi.org/10.1016/j.bioelechem.2008.11.002.
15. Zen J.M., Kumar A.S., Wang H.F. A dual electrochemical sensor for nitrite and nitric oxide. Analyst. 2000; 125 (12): 2169–72. https://doi.org/10.1039/b008176k.
16. Jeong G., Shin S.Y., Kyokunzire P., et al. High-performance nitric oxide gas sensors based on an ultrathin nanoporous poly(3-hexylthiophene) film. Biosensors. 2023; 13 (1): 132. https://doi.org/10.3390/bios13010132.
17. Xu S., Liu X., Wu J., Wu J. NO(x) sensor constructed from conductive metal-organic framework and graphene for airway inflammation screening. ACS Sens. 2023; 8 (6): 2348–58. https://doi.org/10.1021/acssensors.3c00428.
18. Wang S.H., Shen C.Y., Su J.M., Chang S.W. A room temperature nitric oxide gas sensor based on a copper-ion-doped polyaniline/tungsten oxide nanocomposite. Sensors. 2015; 15 (4): 7084–95. https://doi.org/10.3390/s150407084.
19. Alam R., Islam A.S.M., Sasmal M., et al. A rhodamine-based turn-on nitric oxide sensor in aqueous medium with endogenous cell imaging: an unusual formation of nitrosohydroxylamine. Org Biomol Chem. 2018; 16 (21): 3910–20. https://doi.org/10.1039/c8ob00822a.
20. Yang Q., Zhou Y., Tan L., et al. Rationally constructed de novo fluorescent nanosensor for nitric oxide detection and imaging in living cells and inflammatory mice models. Anal Chem. 2023; 95 (4): 2452–9. https://doi.org/10.1021/acs.analchem.2c04640.
21. Tan L., Yang Q., Peng L., et al. Molecular engineering-based a dual-responsive fluorescent sensor for sulfur dioxide and nitric oxide detecting in acid rain and its imaging studies in biosystems. J Hazard Mater. 2022; 435: 128947. https://doi.org/10.1016/j.jhazmat.2022.128947.
22. Choi A.W., Yim V.M., Liu H.W., Lo K.K. Rhenium(I) polypyridine diamine complexes as intracellular phosphorogenic sensors: synthesis, characterization, emissive behavior, biological properties, and nitric oxide sensing. Chemistry. 2014; 20 (31): 9633–42. https://doi.org/10.1002/chem.201402502.
23. Kumar P., Kalita A., Mondal B. Copper(II) complexes as turn on fluorescent sensors for nitric oxide. Dalton Trans. 2012; 41 (35): 10543–8. https://doi.org/10.1039/c2dt31068f.
24. Yang L.H., Ahn D.J., Koo E. A “turn-on” fluorescent microbead sensor for detecting nitric oxide. Int J Nanomedicine. 2014; 10: 115–23. https://doi.org/10.2147/IJN.S74924.
25. Montfort W.R., Wales J.A., Weichsel A. Structure and activation of soluble guanylyl cyclase, the nitric oxide sensor. Antioxid Redox Signal. 2017; 26 (3): 107–21. https://doi.org/10.1089/ars.2016.6693.
26. Adams H.R., Svistunenko D.A., Wilson MT., et al. A heme pocket aromatic quadrupole modulates gas binding to cytochrome c'-β: implications for NO sensors. J Biol Chem. 2023; 299 (6): 104742. https://doi.org/10.1016/j.jbc.2023.104742.
27. Wu Y., Jiang N., He Z., et al. Direct electrochemical detection of extracellular nitric oxide in Arabidopsis protoplast based on cytochrome P450 55B1 biosensor. Nitric Oxide. 2023; 132: 8–14. https://doi.org/10.1016/j.niox.2023.01.005.
28. Liu X., Shang L., Pang J., Li G. A reagentless nitric oxide biosensor based on haemoglobin/polyethyleneimine film. Biotechnol Appl Biochem. 2003; 38 (Pt 2): 119–22. https://doi.org/10.1042/BA20030056.
29. Wang Y., Zhou Y., Chen Y., et al. Simple and sensitive nitric oxide biosensor based on the electrocatalysis of horseradish peroxidase on AuNPs@metal-organic framework composite-modified electrode. Mikrochim Acta. 2022; 189 (4): 162. https://doi.org/10.1007/s00604-022-05268-8.
30. Alsiraey N., Malinski T., Dewald H.D. Using metalloporphyrin nanosensors for in situ monitoring and measurement of nitric oxide and peroxynitrite in a single human neural progenitor cell. ACS Sens. 2024; 9 (6): 3037–47. https://doi.org/10.1021/acssensors.4c00234.
31. Salazar-Salinas K., Jauregui L.A., Kubli-Garfias C., Seminario J.M. Molecular biosensor based on a coordinated iron complex. J Chem Phys. 2009; 130 (10): 105101. https://doi.org/10.1063/1.3070235.
32. Торшин И.Ю., Громова О.А., Майорова Л.А. О перспективах применения производных витамина В12 в фармакологии. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2023; 16 (3): 501–11. https://doi.org/10.17749/2070-4909/farmakoekonomika.2023.198.
33. Broderick K.E., Singh V., Zhuang S., et al. Nitric oxide scavenging by the cobalamin precursor cobinamide. J Biol Chem. 2005; 280 (10): 8678–85. https://doi.org/10.1074/jbc.M410498200.
34. Sharma V.S., Pilz R.B., Boss G.R., Magde D. Reactions of nitric oxide with vitamin B12 and its precursor, cobinamide. Biochemistry. 2003; 42 (29): 8900–8. https://doi.org/10.1021/bi034469t.
35. Brouwer M., Chamulitrat W., Ferruzzi G., et al. Nitric oxide interactions with cobalamins: biochemical and functional consequences. Blood. 1996; 88 (5): 1857–64.
36. Kruszyna H., Magyar J.S., Rochelle L.G., et al. Spectroscopic studies of nitric oxide (NO) interactions with cobalamins: reaction of NO with superoxocobalamin(III) likely accounts for cobalamin reversal of the biological effects of NO. J Pharmacol Exp Ther. 1998; 285 (2): 665–71.
37. Zheng D., Yan L., Birke R.L. Electrochemical and spectral studies of the reactions of aquocobalamin with nitric oxide and nitrite ion. Inorg Chem. 2002; 41 (9): 2548–55. https://doi.org/10.1021/ic010802a.
38. Wolak M., Zahl A., Schneppensieper T., et al. Kinetics and mechanism of the reversible binding of nitric oxide to reduced cobalamin B(12r) (Cob(II)alamin). J Am Chem Soc. 2001; 123 (40): 9780–91. https://doi.org/10.1021/ja010530a.
39. Gromova O.A., Torshin I.Yu., Maiorova L.A., et al. Bioinformatic and chemoneurocytological analysis of the pharmacological properties of vitamin B12 and some of its derivatives. J Porphyrins Phthalocyanines. 2021; 25 (09): 835–42. https://doi.org/10.1142/S1088424621500644.
40. Maiorova L.A., Erokhina S.I., Pisani M., et al. Encapsulation of vitamin B12 into nanoengineered capsules and soft matter nanosystems for targeted delivery. Colloids Surf B Biointerfaces. 2019; 182: 110366. https://doi.org/10.1016/j.colsurfb.2019.110366.
41. Maiorova L.A., Gromova O.A., Torshin I.Yu., et al. Nanoparticles of nucleotide-free analogue of vitamin B12 formed in protein nanocarriers and their neuroprotective activity in vivo. Colloids Surf B Biointerfaces. 2024; 244: 114165. https://doi.org/10.1016/j.colsurfb.2024.114165.
42. Vu T.T., Maiorova L.A., Berezin D.B., Koifman O.I. Formation and study of nanostructured M-monolayers and LS-films of triphenylcorrole. Macroheterocycles. 2016; 9: 73–9. https://doi.org/10.6060/mhc151205m.
43. Maiorova L.A., Kobayashi N., Zyablov S.V., et al. Magnesium porphine supermolecules and two-dimensional nanoaggregates formed using the Langmuir–Schaefer technique. Langmuir. 2018; 34: 9322–9. https://doi.org/10.1021/acs.langmuir.8b00905.
44. Valkova L.A., Shabyshev L.S., Borovkov N.Yu, et al. Supramolecular assembly formation in monolayers of tert-butyl substituted copper phthalocyanine and tetrabenzotriazaporphin. J Incl Phenom Macrocycl Chem. 1999; 35: 243–9. https://doi.org/10.1023/A:1008147031935.
45. Maiorova-Valkova L.A., Koifman O.I., Burmistrov V.A., et al. 2D M-nanoaggregates in Langmuir layers of calamite mesogen. Prot Mets Phys Chem Surf. 2015; 51: 85–92. https://doi.org/10.1134/S2070205115010074.
46. Ariga K., Nishikawa M., Mori T., et al, Self-assembly as a key player for materials nanoarchitectonics. Sci Technol Adv Mater. 2019; 20 (1): 51–95. https://doi.org/10.1080/14686996.2018.1553108.
47. Webre W.A., Gobeze H.B., Shao S., et al. Fluoride-ion binding promoted photoinduced charge separation in a self-assembled C60 alkyl cation bound bis-crown ether-oxoporphyrinogen supramolecule. Chem Commun. 2018; 54 (11): 1351–4. https://doi.org/10.1039/c7cc09524d.
48. Oldacre A.N., Friedman A.E., Cook T.R. A self-assembled cofacial cobalt porphyrin prism for oxygen reduction catalysis. J Am Chem Soc. 2017; 139 (4): 1424–7. https://doi.org/10.1021/jacs.6b12404.
49. Brenner W., Ronson T.K., Nitschke J.R. Separation and selective formation of fullerene adducts within an M(II)(8)L(6) cage. J Am Chem Soc. 2017; 139 (1): 75–8. https://doi.org/10.1021/jacs.6b11523.
50. Valkova L., Borovkov N., Kopranenkov V., et al. Some features of the molecular assembly of copper porphyrazines. Mat Sci Engin C. 2002; 22 (2): 167–70. https://doi.org/10.1016/S0928-4931(02)00166-2.
51. Valkova L.A., Glibin A.S., Valli L. Quantitative analysis of compression isotherms of fullerene C60 Langmuir layers. Colloid J. 2008; 70: 6–11. https://doi.org/10.1134/S1061933X0801002X.
52. Valkova L., Menelle A., Borovkov N., et al, Small-angle X-ray scattering and neutron reflectivity studies of Langmuir–Blodgett films of copper tetra-tert-butyl-azaporphyrines. J Appl Crystallogr. 2003; 36: 758–62. https://doi.org/10.1107/S0021889803004965.
53. Valkova L., Betrencourt C., Hochapfel A., et al. Monolayer study of monensin and lasalocid in the gas state. Mol Cryst Liq Cryst Sci Technol A. 1996; 287 (1): 269–73. https://doi.org/10.1080/10587259608038763.
54. Karlyuk M.V., Krygin Yu.Yu, Maiorova-Valkova L.A., et al. Formation of two-dimensional (M) and three-dimensional (V) nanoaggregates of substituted cobalt porphyrin in the Langmuir layers and Langmuir–Schaefer films. Russ Chem Bull. 2013; 62: 471–9. https://doi.org/10.1007/s11172-013-0066-5.
55. Kharitonova N.V., Maiorova L.A., Koifman O.I. Aggregation behavior of unsubstituted magnesium porphyrazine in monolayers at air–water interface and in Langmuir–Schaefer films. J Porphyr Phthalocyanines. 2018; 22 (06): 509–20. https://doi.org/10.1142/S1088424618500505.
56. Maiorova L.A., Kobayashi N., Salnikov D.S., et al. Supermolecular nanoentities of vitamin B 12 derivative as a link in the evolution of the parent molecules during self-assembly at the air–water interface. Langmuir. 2023; 39: 3246–54. https://doi.org/10.1021/acs.langmuir.2c02964.
57. Dereven’kov I.A., Maiorova L.A., Koifman O.I., Salnikov D.S. High reactivity of supermolecular nanoentities of vitamin B12 derivative in Langmuir–Schaefer films toward gaseous toxins. Langmuir. 2023; 39 (48): 17240–50. https://doi.org/10.1021/acs.langmuir.3c02317.
Рецензия
Для цитирования:
Торшин И.Ю., Громова О.А., Майорова Л.А., Громов А.Н. Биосенсоры для измерений уровней оксида азота NO в биосубcтратах: систематический анализ. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. https://doi.org/10.17749/2070-4909/farmakoekonomika.2024.278
For citation:
Torshin I.Yu., Gromova O.A., Mayorova L.A., Gromov A.N. Biosensors for measuring nitric oxide NO levels in biosubstrates: a systematic analysis. FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. (In Russ.) https://doi.org/10.17749/2070-4909/farmakoekonomika.2024.278

Контент доступен под лицензией Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.